Impact Factor (IF) - Thomson Reuters Web of KnowledgeSM)

2015: 0.641 - 5 years IF: 0.673

2014: 0.628 - 5 years IF: 0.652

2013: 0.390 - 5 years IF: 0.504

2012: 0.605

2011: 0.468

2010: 0.309

2009: 0.136

An international Journal published under the auspices of:

Recognized by:

Volume 28 (1) - 2005


A new method to estimate the infilling of alluvial sediment of glacial valleys using a sloping local base level

Pages 37-46


A new method is used to estimate the volumes of sediments of glacial valleys. This method is based on the concept of sloping local base level and requires only a digital terrain model and the limits of the alluvial valleys as input data. The bedrock surface of the glacial valley is estimated by a progressive excavation of the digital elevation model (DEM) of the filled valley area. This is performed using an iterative routine that replaces the altitude of a point of the DEM by the mean value of its neighbors minus a fixed value. The result is a curved surface, quadratic in 2D. The bedrock surface of the Rhone Valley in Switzerland was estimated by this method using the free digital terrain model Shuttle Radar Topography Mission (SRTM) (~92 m resolution). The results obtained are in good agreement with the previous estimations based on seismic profiles and gravimetric modeling, with the exceptions of some particular locations. The results from the present method and those from the seismic interpretation are slightly different from the results of the gravimetric data. This discrepancy may result from the presence of large buried landslides in the bottom of the Rhone Valley.

→ Download Abstract PDF

Contribute to CGI downloading this Volume:


Or choose an annual subscription - Go to subscriptions page