
INTRODUCTION 

Mountain glaciers are essential sources of freshwater 
for major rivers worldwide, providing crucial support 
for irrigation and contributing to food production and 
human needs. Northern Pakistan is recognized as the 
home to some of the largest mid-latitude glaciers, which 
are pivotal for the country’s economy, particularly in fa-
cilitating hydropower generation and agriculture with 
their meltwater (Anwar and Iqbal, 2018; Moazzam et al., 
2022; Shafique et al., 2018). Glaciers are highly responsive 
to fluctuations in temperature and precipitation: a study 
by Cogley (2017) has highlighted the rapid shrinkage of 
glaciers in the high mountains of Asia. The accelerated 
melting of glaciers, driven by global warming, has caused 

an extensive retreat (Kraaijenbrink et al., 2017). Another 
cause of accelerated melting is the accumulation of de-
bris in glaciated areas (Kraaijenbrink et al., 2016), result-
ing in a landscape that closely resembles its surroundings 
causing a great challenge for the efficiency of optical re-
mote-sensing technologies to distinguish and analyze the 
modified glacier-covered areas accurately (Smith et al., 
2015). Thus, a comprehensive understanding of glacier 
attributes, particularly their extent, is a fundamental re-
quirement for a range of scientific investigations. How-
ever, glacier inventories like GAMDAM (Glacier Area 
Mapping for Discharge from the Asian Mountains) and 
ICIMOD (International Centre for Integrated Mountain 
Development) show inconsistencies, particularly in the 
measurement of debris-covered glaciers. This discrep-
ancy was observed in the case study of Batura, Ghulkin, 
and Gulmit Glaciers as shown in fig. 1, and highlights 
the need for further investigation to address these in-
consistencies, ensuring a more accurate interpretation of 
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glacier behavior in regions characterized by debris-cov-
ered glaciers. Such discrepancies arise due to variations 
in generation methods, operators, and data used in the 
abovementioned inventories. Different techniques have 
been devised for glacier outline mapping through opti-
cal (Byers et al., 2019; Jabbar et al., 2020; Mazhar et al., 
2018; Ranzi et al., 2004), thermal (Aubry-Wake et al., 2023; 
Shukla et al., 2010) and high-resolution orthophotography 
(Salvatore et al., 2015) remote-sensing data. However, the 
usefulness of thermal data is constrained by the limited 
spatial resolution of available satellite products and when 
delineating thick supraglacial debris-covered terminus 
(Alifu et al., 2015), whereas optical sensors face limita-
tions in acquiring cloud-free and well-illuminated images 
(Lippl et al., 2018).

InSAR (Interferometric SAR) coherence, as a comple-
mentary approach has gained attention in glacier mapping 
(Arigony-Neto et al., 2007; Lippl et al., 2018; Mohajerani 
et al., 2021). InSAR coherence shows the complex rela-
tionship between two synthetic aperture radar (SAR) im-
ages, indicating the consistency of the backscatter signal 
over time. Its range of values spans from 0 to 1, where 0 
represents full decorrelation and 1 indicates stability. The 
temporal changes resulting from a glacier’s movement due 
to gravity can lead to reduced coherence. This reduction 
is a key indicator for delineating debris-covered glaciers, 
independent of their spectral characteristics. However, 
the complex topography in mountainous regions, such as 
the Himalayas, Karakoram, and Hindukush, poses chal-
lenges with layover and foreshortening, causing a lack of 

signal return to the sensor over large areas (Frey et al., 
2012). Some studies like Atwood et al. (2010), integrated 
coherence with slope, size, and morphological filters to 
outline glacier extent. However, instances of data voids 
due to rugged terrain led to manual adjustments, as ob-
served in the work by Frey et al. (2012). Challenges arising 
from distinguishing glacier areas from similarly coherent 
non-glaciated regions, as encountered by Wu et al. (2012), 
were addressed through advanced texture analysis. Al-
though these methods have been instrumental in map-
ping glacier boundaries, they are mostly limited to the 
tongue of the glacier. Accurate delineation of the entire 
glacier, without manual correction, remains challenging 
in many regions. This study aims to develop an integrated 
approach for robust and accurate glacier delineation. We 
stacked an InSAR coherence image with an optical im-
age to classify glaciers based on coherence and near-ho-
mogeneous objects using the OBIA (Object-Based Image 
Analysis) method. OBIA offers a promising methodolo-
gy, focusing on near-homogeneous objects for classifica-
tion rather than pixels. This approach offers flexibility 
in setting classification rules, taking into account spatial 
characteristics and contextual information. Additionally, 
OBIA allows the integration of multi-source data, such as 
optical satellite imagery, InSAR data, and DEMs (digital 
elevation model). Using OBIA in glacier classification, le-
veraging optical, topographic, and InSAR coherence data, 
provides a robust methodology for remote sensing appli-
cations. 

Figure 1 - The locations of Batu-
ra, Passu, Ghulkin, and Gulmit 
glaciers within the Hunza Basin 
in north Pakistan. The inset on 
the right offers a detailed view 
of the lower catchment area, 
including glacier boundaries as 
outlined in previous invento-
ries.
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BACKGROUND 

OBIA is a comprehensive approach for spatial infor-
mation extraction, merging image processing with GIS 
(Geographical information system) functionalities. Un-
like conventional pixel-based techniques, which focus 
solely on spectral characteristics, OBIA segments pix-
els into homogeneous objects, enhancing the analysis of 
complex natural features like glaciers. Working on the 
object level allows the incorporation of various proper-
ties, including spectral, spatial, textural, hierarchical, 
and contextual, derived from multiple data sources. This 
methodological framework assists the computer-based 
interpretation of intricate classes, presenting a promis-
ing opportunity in remote sensing and geographic in-
formation sciences. In our study, OBIA is used on an 
InSAR coherence image fused with an optical image 
to classify debris-covered ice, displaying its superiority 
over pixel-based classification techniques, particularly 
in delineating glaciers under debris-covered conditions. 
Combining the coherence band with optical bands helps 
distinguish between coherent surfaces and non-coherent 
features, such as debris-covered glaciers. Also, it helps to 
overcome foreshortening and layover effects by altering 
band combinations. Previous studies such as Rastner et 
al. (2014) and Kraaijenbrink et al. (2016) demonstrated 
the effectiveness of OBIA in classifying glaciers. This in-
tegrated approach of InSAR and optical data using an 
object-based approach proves advantageous, especially 
when dealing with high-resolution imagery or combining 
data from various sources.

STUDY AREA 

The study area is located in the upper Hunza Valley, 
Huza Nagar district, Gilgit-Baltistan, within the central 
Karakoram in northern Pakistan as shown in fig. 1. Eleva-
tion within the study region ranges from 3000 to 7900 me-
ters a.s.l., as determined by data from the Shuttle Radar To-
pography Mission (SRTM) digital elevation model (DEM). 
The region features prominent peaks such as Distaghil Sar 
(7885 m a.s.l), Batura Muztagh (7795 m a.s.l), and Passu 
Sar (7476 m a.s.l). Extensive glaciers, such as the Hispar 
Glacier and the Batura Glacier surround these high peaks 
in the area. These glaciers primarily feed the Hunza Nagar 
River, the area’s main water source. Hunza Nagar district 
experiences the influence of the westerlies and the Indian 
Monsoon during the summer season and has a temperate 
climate, with average low and high temperatures of 16°C 
and 35.9 °C respectively in Ali Abad in the valley floor. The 
annual average rainfall is 136.2 mm, ranging from a mini-
mum of 2.1 mm in November to a maximum of 28.3 mm in 
April (Shafique et al., 2018).

The selected glaciers for this study are Batura, Passu, 
Ghulkin, and Gulmit. Batura Glacier is around 59 kilome-
ters long and is one of the longest outside the polar regions. 
To its south lie the Passu, Ghulkin, and Gulmit Glaciers. 
Among these glaciers, Passu Glacier is clean without de-
bris cover, while the Batura, Ghulkin, and Gulmit Glaciers 
are covered with debris, as shown in fig. 1. The University 
of Mian and EVK2 CNR have created a new glacier in-
ventory of Pakistan (referred to as “new glacier inventory” 
in this study) using Sentinel 2 imagery acquired in 2022 
(Diolaiuti et al., 2024). Based on this inventory, the Batura 
Glacier covers a total area estimated to be 273.3 km2, with 
elevations ranging from 2622 m to 7775 m a.s.l. and a slope 
of 21.6°. The Passu Glacier spans approximately 52.4 km2, 
with elevations ranging from 2688 m to 7645 m a.s.l. Fur-
thermore, the Ghulkin Glacier ranges from 2456 m to 7087 
m a.s.l. in elevation, covering an area of 23.2 km2, while the 
Gulmit Glacier covers an area of 11.1 km2.

MATERIALS AND METHODS

Data 

Sentinel 1 single look complex (SLC) imagery and 
cloud-free (< 5%) optical imagery from Sentinel 2 multi-
spectral instrument (MSI) imagery acquired in July 2022 
were used. The European Space Agency provides both 
optical Sentinel-2 MSI and InSAR Sentinel-1 sensor SLC 
data for earth observation free of cost, rendering them 
well-suited for environmental analyses. The Sentinel-2 
sensor offers 13 distinct spectral bands, ranging from the 
visible spectrum to shortwave infrared, with wavelengths 
between 443 nm and 2190 nm. In terms of spatial resolu-
tion, Sentinel-2 captures three distinct resolutions: 10 me-
ters for the visible and near-infrared bands, 20 meters for 
the red-edge and shortwave infrared bands, and 60 meters 
for the atmospheric correction bands. This blend of high 
spectral and spatial resolution improves the sensor’s ca-
pability and facilitates the use of advanced algorithms for 
accurate spectral identification of glaciers, as highlighted 
by (Kääb et al., 2016; Paul et al., 2016). In contrast, Senti-
nel-1 is an active radar sensor and captures imagery with-
in the C-band. Interferometric Wide (IW) swath mode of 
sentinel 1 is the primary mode used over land, covering 
a 250 km swath at a spatial resolution of 5 m × 20 m. It 
employs the Terrain Observation with Progressive Scans 
SAR (TOPSAR) acquisition principle to capture three sub-
swaths. This technique electronically steers the beam both 
in the range, similar to ScanSAR, and azimuthally from 
backward to forward for each burst. This dual steering 
minimizes scalloping, resulting in uniform image quality 
throughout the swath. The TOPSAR mode supersedes the 
conventional ScanSAR, maintaining equivalent coverage 
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and resolution while achieving consistent image quality, 
as measured by the signal-to-noise ratio and distributed 
target ambiguity ratio (Meyer, 2020). The Interferomet-
ric Wide Swath (IW) mode of the C-band of Sentinel-1 
was chosen for estimating SAR coherence. The temporal 
baselines between SAR pairs hold significance, impact-
ing the overall image coherence and potentially influenc-
ing co-registration quality. It is vital to acknowledge that 
seemingly minor factors such as solid precipitation or wind 
drift and vegetation growth during acquisition intervals 
can exert substantial influence on co-registration accuracy, 
leading to compromised coherence even in cases without 
actual surface movement (Villarroya-Carpio et al., 2022). 
The optical imagery and radar data were obtained from 
the Copernicus website, specifically focusing on acquir-
ing data with minimal cloud cover and fresh snow cover. 
Therefore, imagery from July to September was examined 
for this purpose. The temporal baseline of the SAR imag-
ery of descending order was 12 days. The dataset utilized 
in this research is detailed in table 1.

Methods 

In this study, we propose a novel approach to stack In-
SAR coherence with optical multispectral data. To the best 
of our knowledge, this approach is not been used previ-
ously on Sentinel-2 optical and Sentinel-1 InSAR combined 
data for the delineation of debris-covered glaciers. The 
methodology can be divided into three main sections i.e., 
i) estimation of coherence from SAR SLC images, ii) com-
bining Sentinel 1 InSAR image with Sentinel 2 optical 
bands, and iii) Segmentation of the InSAR coherence and 
Sentinel 2 optical composite image based on similar pixels. 
Fig. 2 illustrates the flowchart outlining the methodology 
utilized for estimating coherence and extracting the glacier 
outlines.

Coherence estimation 

The process involved employing the processing tools 
in SNAP (Sentinel Application Platform) software for au-
tomated calculations. Interferometric processing involves 
combining pairs of SLC images at VV polarization into in-
terferograms as the VV channel is more suitable for varia-
tion and returns higher coherence compared to HH polar-
ization (Villarroya-Carpio et al., 2022). Before generating 

the interferogram, a crucial step involves co-registering the 
Sentinel-1 SLC split pairs (reference and secondary) within 
the sub-swath (fig. 2 p1). This process utilizes the orbits 
of the two products and a Shuttle Radar Topography Mis-
sion (SRTM) 1 Arc-Second DEM for geometric correction, 
ensuring accurate interferogram calculations. Refining the 
interferogram involves subtracting the topographic phase, 
achieved by “radar coding” the DEM to the interferogram 
area and subtracting it from the complex interferogram. To 
address the inherent speckle noise in SLC images, a com-
bination of Goldstein Phase Filtering and the multilooking 
method was applied. A scene is captured multiple times in 
a SAR image, from slightly different angles. Each of these 
captures is called a “look.” Multi-looking involves combin-
ing several of these looks into a single processed image. 
The multilooking method not only reduces noise but also 
generates square ground pixels for a more accurate repre-
sentation (Holobâcǎ et al., 2021). This process decreases 
spatial resolution by blending finer details. Consequent-
ly, while the image becomes clearer, the ability to discern 
small features is reduced (Braun and Veci, 2021). This tech-
nique entails averaging multiple looks or samples within a 
SAR image pixel, usually along both range and azimuth 
directions. By doing so, it creates a smoother and more 
comprehensible image, thereby improving image quality 
and facilitating the identification of features and patterns 
within the SAR data.

The last step in SNAP processing involves range Dop-
pler terrain correction. To create a layover and shadow 
mask the SAR simulation terrain correction operator was 
used. This step is essential because the layover effect causes 
the signal reflected from the top of the mountain to reach 
the receiver before the signal from the bottom, leading to 
inversion on the fore-slope. Removing the shadow effect 
simultaneously conceals information from the backslope, 
improving the accuracy of the processed SAR data. At the 
terrain correction stage, the coherence images were resam-
pled to a pixel size of 10 meters to enable seamless stacking 
with optical multispectral data for the delineation of gla-
cier boundaries.

Various factors contribute to the loss of coherence 
between SAR images, including steep slopes reducing 
signal-to-noise ratio and vegetated surfaces introducing 
decorrelation through volume scattering (Massom and 
Lubin, 2006; Villarroya-Carpio et al., 2022). Large base-
lines result in reduced coherence, and extended time lags 

Table 1- Sentinel-1 and -2 data utilized in this study for glacier classification.

Acquisition Date Image ID Satellite Spatial resolution (m)

04-07-2022 S2B_MSIL1C_20220704T054649_N0400_R048_T43SDA_20220704T081851.SAFE Sentinel-2 10

09-07-2022 S1A_IW_SLC__1SDV_20220709T125748_20220709T125816_044024_054146_7026.SAFE Sentinel-1 5 × 20

21-07-2022 S1A_IW_SLC__1SDV_20220721T125748_20220721T125816_044199_054682_B890.SAFE Sentinel-1 5 × 20



233

between images lead to the same effect (Holobâcǎ et al., 
2021). In glacial environments, notable transformations 
like glacier surges, substantial melting, or snow accu-
mulation lead to coherence reduction. Addressing these 
issues involves careful selection of the season and SAR 
images, supplemented by consultation with meteorolog-
ical data. Optimal coherence values are often observed 
during peak ablation season which is from mid-July to 
mid-August (Lu and Freymueller, 1998). The 12-day re-
peat orbit pattern of Sentinel-1 serves a crucial function 
in regulating the minimum time interval necessary when 
employing ascending or descending pairs, since the loss 

of Sentinel-1B. It ensures the effective monitoring of gla-
cier movement while mitigating coherence loss for other 
land-use categories. 

The time required for data acquisition, processing, and 
analysis largely depends on the system’s specifications and 
internet speed. On an average i7 system with 20 GB of 
RAM and a 2.7 GHz processing capacity, and with typical 
internet speed, it can take up to 24 hours to process a single 
Sentinel-1 scene. We successfully processed imagery cov-
ering approximately 80,971 km² (encompassing nearly the 
entire KHK region of northern Pakistan) using Sentinel-1 
data and estimated the coherence for the area.

Figure 2 - The methodology for creating 
glacier outlines using InSAR coherence es-
timation and optical composite. Initial pro-
cessing steps (p1) were conducted in SNAP, 
followed by further processing in QGIS 
(p2). Within QGIS, images ‘a’ and ‘b’ were 
stacked to produce ‘c’ upon which OBIA 
was performed to derive glacier outlines ‘d’.
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Image fusion 

Both InSAR and optical data have their advantages and 
disadvantages. One limitation of InSAR is its performance 
in challenging terrain. On the other hand, optical data often 
show discrepancies of 30% or more in the spectral classifi-
cation of debris-covered ice compared to manually corrected 
outlines (Robson et al., 2015). This discrepancy arises mainly 
due to the similar spectral signatures of glacier debris and 
the surrounding bedrock. To address these issues, we uti-
lized a combination of InSAR and optical bands. A single 
coherence image using SNAP was generated. Subsequently, 
the build raster tool within QGIS was utilized to merge the 
visible bands (bands 2, 3, and 4), NIR band (band 8), and 
SWIR band (band 11) of the Sentinel-2 scene with the coher-
ence image, all at a spatial resolution of 10 meters.

By fusing the coherence band with the optical bands, we 
aimed to distinguish between coherent surfaces and non-co-
herent features, such as debris-covered glaciers, within the 
image by altering band combinations. Additionally, optical 
bands such as band 11 and band 8 aided in the differentia-
tion of clean ice from surrounding features. The integration 
of InSAR with optical bands not only facilitated the removal 
of layover and foreshortening effects in the images but also 
addressed one of the principal challenges encountered when 
using InSAR in such topographic areas. Moreover, this com-
bined approach assisted in distinguishing low-coherence fea-
tures, such as vegetation cover and water, within the image. 

Segmentation 

OBIA represents a spatially precise methodology for 
extracting information and merging image processing 
with GIS capabilities (Blaschke, 2010). Segmenting im-
ages into near-homogeneous objects is a crucial stage in 
OBIA. This process involves grouping pixels into objects 
in a bottom-up manner, and various hierarchical levels 
can be formed by merging individual objects. The spectral 
analysis focused on delineating glacier ice/snow, glacier 
debris, and rocky slopes. To differentiate glacier debris 
from the surrounding rocks, a new dataset was generated 
resulting in a novel multiband image stack. The coher-
ence image was stacked with the optical image to create 
a multi-band image, clearly highlighting debris-covered 
glaciers. The optimal approach for differentiating the 
clean glacier involves utilizing spectral reflectance from 
the optical image, while the debris-covered part can be 
identified by coherence estimation. Subsequently, a seg-
mentation classification algorithm was implemented on 
this updated multi-band dataset to group pixels based on 
their proximity and similarity in response to spectral re-
flectance and coherence, thus enhancing the differentia-
tion process (see fig. 3). 

Rastner et al. (2014) highlighted that the effectiveness 
of OBIA is greatly influenced by the initial choice of pa-
rameters made during the segmentation process. The 
OBIA segmentation process was performed in QGIS, 

Figure 3 - Illustration of the 
segmentation using combined 
InSAR and optical imagery. The 
InSAR coherence image is dis-
played in the blue band, Senti-
nel-2 Band 8 in the green band, 
and Sentinel-2 Band 11 in the 
red band. After classification, 
glacier segments are shown in 
white, while non-glacier areas 
are represented in black.
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utilizing the Orfeo Toolbox (OTB) plugin, which incor-
porates the multi-resolution segmentation algorithm, that 
integrates spectral, geometric, and texture properties with 
predefined and customizable parameters governing size, 
shape, and similarity to neighboring segments. Essential 
parameters include the segmentation algorithm, dictating 
the method for partitioning the image into segments, spa-
tial radius, determining the spatial scale of segmentation, 
and range radius, which influences spectral variation with-
in segments. Additionally, the optional minimum segment 
size parameter allows users to filter out small segments, 
aiding in noise reduction and artifact removal from the 
segmentation results.

In this study, we applied the mean-shift (multi-thread-
ed) segmentation algorithm. We kept a spatial radius, 
representing the neighborhood radius, at a value of 5. 
Similarly, the range radius, signifying the radius in the 
multispectral space and expressed in radiometry units, was 
retained at 10, with a mode coverage of 0.1000. Additional-
ly, the minimum size of a region during segmentation was 
set to 50 pixels, facilitating the merging of smaller clusters 
with the nearest neighboring cluster based on radiomet-
ric similarity. As a result of this step, a polygonal vector 
format (shapefile) was created and glacier polygons were 
assigned with a value; this way the glacier boundary was 
delineated from adjacent non-glacier areas. The parame-
ters were selected with reference to Michel et al. (2015) and 
were adjusted according to the spatial resolution to match 

the specific characteristics of the study area, optimizing 
the balance between detail and noise reduction for precise 
glacier mapping. While these settings are customized for 
our particular environment, they can be modified for use 
in other locations.

RESULTS 

The glacier outlines generated using OBIA were com-
pared against the new glacier inventory created by the 
University of Milan using Sentinel 2 data. Our observation 
indicates that the debris cover on the Batura, Ghulkin, and 
Gulmit glaciers exhibits reduced coherence. This suggests 
that interferometric coherence is a valuable metric for dis-
tinguishing between active debris-covered glaciers and 
areas of bedrock. While acknowledging the possibility of 
variations in other regions and recognizing the impact of 
errors associated with layover and shadow areas on over-
all performance, it is recommended to consider integrating 
data from multiple image directions in such cases. The re-
sults derived from Sentinel 2 imagery (new glacier invento-
ry) are better than those from Landsat used in the GAM-
DAM inventory (see fig. 4), primarily due to the ability to 
identify glaciers more effectively due to the availability of 
multiple spectral bands and higher spatial resolution (An-
war and Iqbal, 2018). Delineating glacier boundaries be-
comes challenging when using coarse-resolution imagery.

Figure 4 - Comparison of glacier outlines derived from OBIA using combined InSAR and 
optical multispectral data (white), the recently developed glacier inventory using Sentinel-2 
data (green), and the older GAMDAM inventory created with Landsat imagery (yellow). The 
challenges of low coherence in InSAR images due to factors like shadow, layover, water, and 
vegetation (seen in a and b) are addressed in the stacked images (c and d).
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In the coherence image, the region with low coherence 
covers both the debris-covered and clean ice of the gla-
cier, while the high coherence area represents non-glacier 
regions. However, at the terminus of the Batura glacier, 
there were instances of low coherence blocks likely caused 
by flowing water and vegetation growth (fig. 4b). Fig. 4 
shows that layover and foreshortening effects caused by 
rough terrain (fig. 4a) and low coherence caused by veg-
etation and water bodies (fig. 4b) can be removed in an 
InSAR and optical multispectral data. This helped during 
the segmentation process to accurately delineate glacier 
boundaries. 

To evaluate the accuracy of our glacier outlines we 
conducted an assessment based on the recently developed 
inventory by the researchers at the University of Milan us-
ing imagery acquired in 2022. Unlike the previous glacier 
inventories, our approach incorporated InSAR coherence 
data to determine the extent of glacier ice beneath the 
debris cover while creating glacier outlines. The OBIA 
outlines derived from InSAR coherence and optical data 
were compared with the reference glacier inventory (new 
inventory), using percentages of deviation to assess accu-
racy.
To assess the accuracy of the delineated glacier outlines, 
a buffer zone of 200 meters was established around the 
debris-covered sections of Batura Glacier of Ghulkin 
and Gulmit Glaciers, taking into account both the gla-
cier dimensions and the valley width. Four cases were 

considered: (a) ‘true positive’, which denotes the overlap 
of the glacier area delineated from the automatic pro-
cess with the glacier area from the manually corrected 
data, (b) ‘false positive’, which corresponds to the gla-
cier area mapped exclusively by our processing, (c) ‘true 
negative’, which pertains to pixels classified as no-gla-
cier in both instances (correctly unassigned), and (d) 
‘false negative’, which represents the region classified 
as a glacier solely by the reference dataset. Compared 
to the reference datasets, the OBIA approach, which 
utilizes optical and coherence data, was able to detect 
debris-covered areas, water, and vegetation (see fig. 5). 
However, this led to some false positive detections when 
compared to the reference data. These areas were me-
ticulously checked and some of the area was included 
in the glacier outlines, resulting in a larger estimated 
glacier area compared to the previous inventory (table 
2). As illustrated in fig. 6, 96.8% of the area of Batura 
Glacier was correctly classified compared to the refer-
ence inventory, while 94.6% of Passu Glacier and 94.7% 
and 93.4% of Ghulkin and Gulmit, respectively, were 
accurately classified.

Various studies, such as Anwar and Iqbal (2018) and 
Moazzam et al. (2022), have indicated anomalous and sta-
ble behavior among Karakoram glaciers, and the same pat-
tern was also observed in our study. More precisely, Batura 
Glacier and Passu Glacier show signs of retreat when com-
pared with previous inventory such as GAMDAM (fig. 4). 
Ghulkin appears to have undergone surging, and the Gul-
mit glacier is stable when compared to the GAMDAM in-
ventory. The GAMDAM glacier inventory was completed 
in 2010 using Landsat ETM+ scene from 1999-2003 (Nui-
mura et al., 2015). Since then, it has been updated multiple 
times. The inventory was revised and expanded in 2015 
using imagery from 1990-2010, reflecting improvements in 
data and methodology (Xie et al., 2023). The comparison of 
the studied glaciers against the previous inventory is given 
in table 3.

Figure 6 - The figure depicts the area and proportion categorized into 
four different classes (true positive, true negative, false positive, and false 
negative) compared to the reference inventory.

Figure 5 - The white polygons around each glacier represent the buffer 
zone for error analysis. Panels (a) to (c) display the insight maps of the 
Batura, Ghulkin, and Gulmit glaciers, respectively, demonstrating the 
accuracy of the adopted approach in this study.
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DISCUSSION

In comparison to conventional methods, utilizing SAR 
data for delineating debris-covered glaciers offers several 
advantages: SAR data can be used effectively regardless of 
the time (day or night), and it operates independently of 
cloud cover, which often obstructs optical imagery. While 
optical imagery and DEMs are commonly employed for 
glacier outline delineation, especially in remote sensing 
applications, they may not accurately represent the bound-
aries of debris-covered glaciers, where debris-covered areas 
are challenging to delineate. Thermal bands can be used 
in mapping debris-covered glaciers due to their ability to 
capture variations in surface temperature. These variations 
help distinguish between ice, debris, and other materials 
on the glacier’s surface. However, it also presents inaccura-
cies, e.g., owing to thermal contrasts in the shadow caused 
by the varying surface aspect and the lower spatial resolu-
tion it provides. In contrast, coherence maps derived from 
SAR data offer clear delineation of the boundaries of de-
bris-covered glaciers, a task that proves difficult with op-
tical imagery. The errors and uncertainties primarily stem 
from the accuracy of coherence estimation, which may vary 
when employing different estimation methods. Jiang et al. 
(2011) and Lippl et al. (2018) have highlighted the uncer-
tainties with coherence estimation when using various esti-
mation techniques. Moreover, vegetation and water bodies 
exhibit relatively similar coherence as glaciers. As a result, 
they contribute to misclassification in the coherence mask 
image, which may arise from vegetation cover near the gla-
cier terminus. Combining optical data with InSAR coher-
ence can significantly address this issue, and this challenge 
might be further mitigated by conducting observations at 
a shorter temporal baseline. However, fast-flowing glaciers, 
which can be distinguished from rivers and lakes, may still 
present some difficulties.

Utilizing Sentinel-1 InSAR coherence stacked with Sen-
tinel-2 optical data for delineating debris-covered glaciers 
yields highly accurate results. This process requires exam-

ining various technical parameters to assess their impact on 
the accuracy of the results. Parameters such as the selection 
of temporal baselines to accommodate seasonal variations, 
assessment of spatial resolution effects, and evaluation of 
pre-processing techniques like radiometric and geometric 
corrections, speckle filtering, and terrain correction on 
coherence values are essential. In addition, determining 
optimal coherence thresholds for classification, exploring 
integration benefits of SAR and optical data, and validating 
results with ground truth data are crucial steps. Consid-
eration of terrain characteristics, temporal dynamics, and 
sensitivity assessment, including error propagation from 
coherence estimation to final delineation, further enhanc-
es the sensitivity analysis, ensuring robust glacier mapping 
methodologies.

The literature on OBIA is rapidly expanding, leading to 
the emergence of sub-topics such as specific OBIA hierar-
chy and scale concepts (Addink et al., 2007), segmentation 
for OBIA (Trias-Sanz et al., 2008) and OBIA change de-
tection (Gamanya et al., 2009; Stow et al., 2008). Its ability 
to integrate contextual information allows the removal and 
reclassification of clouds and shadows intersecting with 
glacier ice, reducing the need for extensive manual cor-
rections. Moreover, OBIA efficiently separates objects into 
their constituent components, enabling the assignment of 
classes within a hierarchical structure. The hierarchical 
approach allows the representation of glaciers in distinct 
categories such as “clean ice” and “debris-covered ice”, or 
“glacial lakes” including “pro-glacial lakes”, “supra-glacial 
lakes”, and “marginal-glacier lakes” (Nigrelli et al., 2013; 
Robson et al., 2015). OBIA’s ability to handle optical, SAR, 
and DEM data simultaneously allows for the integration of 
multiple datasets to enhance the classification of debris-cov-
ered ice compared to conventional methods. It is important 
to note, that some methods such as the pixel-based clas-
sification methods are simpler and faster to execute com-
pared to OBIA. However, OBIA on optical and InSAR 
coherence imagery is highly replicable and scalable, mak-
ing it a valuable tool for large-scale classification, such as 

Table 2. Comparison of the areal extent of studied glaciers recorded in the reference glacier inventory (a) and our inventory (b). Areas are reported in 
km2.

Inventories Batura Passu Ghulkin Gulmit

a New inventory 273.3 52.4 23.3 11.1

b OBIA-Coherence glacier outlines 274.9 53 23.7 11.6

Table 3. Comparison of the studied glaciers between different glacier inventories. Areas are reported in km2.

ICIMOD inventory GAMDAM inventory New glacier inventory OBIA-Coherence derived 
outlines

Batura glacier 236.4 275.5 273.3 274.9

Passu glacier 50.5 52 52.4 53

Ghulkin glacier 21.2 20.7 23.2 23.7

Gulmit glacier 9.1 11.5 11.1 11.6
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glacier mapping. Its adaptability allows it to be customized 
to different regions by adjusting segmentation parameters 
to suit specific landscape characteristics and data quality. 
This ensures the method can be applied effectively across 
diverse geographic areas, including debris-covered glaciers 
in mountainous regions and other complex terrains. More-
over, the combination of optical and InSAR coherence data 
increases the analysis’s accuracy, enabling precise delinea-
tion of features like glacier boundaries, regardless of sur-
face conditions. The scalable nature of OBIA, along with 
the broad availability of Sentinel-1 and Sentinel-2 data, 
makes it an effective approach for consistent, large-scale 
studies. This method not only supports the creation of up-
dated and reliable inventories but also enhances ongoing 
monitoring efforts, making it highly replicable and suitable 
for various environmental and geographic settings. Several 
studies have highlighted the effectiveness of Object-Based 
Image Analysis (OBIA) in distinguishing debris-covered 
ice from surrounding terrain, especially when combined 
with InSAR coherence and optical data. For example 
(Robson et al., 2015) used OBIA on Landsat and ALO-
SPALSAR combined multi-resolution images and reported 
a 30% improvement in accuracy over manual delineation. 
Thomas et al. (2023), in their study, achieved an overall 3% 
accuracy and 12% increase in accuracy over debris-covered 
glaciers compared to pixel-based image analysis using deep 
learning, highlighting OBIA’s ability to manage complex 
spectral signatures and varying debris cover. These studies 
highlight the improved accuracy and reliability of OBIA in 
detecting and analyzing debris-covered glaciers using op-
tical data. However, by integrating InSAR coherence with 
optical data, the accuracy and reliability of glacier mapping 
are further enhanced. As previously mentioned, InSAR 
coherence identifies stable and unstable surfaces, which, 
when combined with the spectral information from opti-
cal data, allows for more precise differentiation between 
debris-covered ice and non-glacier areas. Consequently, we 
achieved an overall accuracy of 94.87% when compared to 
a recently developed glacier inventory for the region.

CONCLUSION

In this study, we synergistically employed InSAR coher-
ence and OBIA method on the InSAR and optical fused 
data to effectively and robustly outline both clean ice and 
debris-covered glaciers. Coherence data played a pivotal role 
in detecting surface movement on debris-covered glaciers, 
significantly improving outline detection, especially in chal-
lenging areas like glacier termini and slope contacts. This 
method also assisted in information retrieval from layover, 
foreshortening, and shadow areas while effectively reducing 
SAR speckle, thereby improving the overall quality of glacier 
mapping results. Simultaneously, OBIA emerges as a robust 

framework for automated and accurate glacier mapping in-
tegrating diverse data sources such as InSAR and optical 
satellite imagery. Its contextual and hierarchical capabilities 
enable the implementation of customized rule sets tailored 
to specific mapping objectives, streamlining post-process-
ing tasks and enhancing the ability to map various glacier 
surface types accurately. By combining InSAR coherence 
estimation and OBIA methods, we successfully delineated 
the Batura, Ghulkin, and Gulmit debris-covered glaciers, in 
the Hunza Valley. Our approach demonstrated reduced pro-
cessing time and mapping errors while showcasing the po-
tential for broader-scale glacier outline mapping. The almost 
global coverage and free availability of Sentinel-1 and Senti-
nel-2 data, along with their high temporal acquisition, make 
them ideal for studies with short temporal baselines and 
allow regular updates of global glacier databases promptly. 
For future studies, topographic data could also be integrated 
with InSAR coherence data and optical imagery in an OBIA 
approach to investigate its added value. This method allows 
for effectively mapping glacierized areas with extensive de-
bris cover on a broader scale.
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