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Abstract: Zakerinejad R., Sommer C., Hochschild V. & 
Maerker M., Spatial distribution of water erosion using stochastic mod-
eling in the Southern Isfahan Province, Iran. (IT ISSN 0391-9838, 2021).

Soil erosion is often regarded as one of the main processes of deserti-
fication. Many parts of the world have been affected by soil erosion, result-
ing in major environmental problems and causing land degradation, loss of 
agricultural land, destroyed villages and infrastructure as well as historic 
places. Soil erosion particularly affects arid and semi-arid regions due to 
long dry periods and often-intensive precipitation events. The soil particles 
washed off by surface and subsurface runoff are the biggest pollution fac-
tor in terms of amount and volume. Our case study is located in the South-
ern Isfahan province, Central Iran. The area is severely affected by water 
erosion such as gullies, rills and badlands. The main aim of this study is 
to predict the spatial distribution of the different water related erosion 
types and their susceptibilities using a probabilistic Maximum Entropy 
Model approach based on the following environmental layers: lithology, 
soil textures, land use, precipitation, Normalized Difference Vegetation 
Index and topographic indices derived from an SRTM DEM with 30 m 
spatial resolution. An inventory of the erosion forms and features such as 
gully erosion, rill erosion and badland erosion was determined based on 
Google Earth images (GE), aerial photos and a field campaign conducted 
in 2018. In order to validate the stochastic modelling approach, we divided 
the entire sample in a train (70%) and test (30%) dataset. We validated the 
model performance using the Area Under Curve (AUC) value. The model 
yields good (rill and gully erosion) to excellent (badland) results for both 

train and test data. The spatial prediction of susceptibilities for rill, gully 
and badland erosion show that in total more than 40% of the study area is 
affected by water erosion processes (4.8% rill erosion; 23.4% gully erosion 
and 17.9% badland erosion). The knowledge of susceptible areas is crucial 
for a proper land management and related soil conservation measures to 
guarantee a sustainable land use.

Key words: Gully erosion, Badlands, Rill erosion, Maximum En-
tropy Model, Iran.

INTRODUCTION

In 1983, according to the evaluations made by FAO 
worldwide an area of 5-7 million hectares of agricultural 
land were lost due to degradation processes such as soil 
erosion, soil salinization, urbanization, etc.. Soil erosion 
processes may act on very short time scales but can also last 
over tens and hundreds of years. Particularly, effects of soil 
erosion attract special attention if they become disastrous. 
Soil loss becomes often critical if socioeconomic and polit-
ical factors favor erosion (man-induced erosion).

In arid and semiarid regions, with scarce vegetation 
and particularly in areas with low infiltration capacity, e.g. 
due to soil compaction, stormflow is capable to effectively 
erode the soil. In other words, areas with low vegetation 
and overgrazing in large parts of the world are more ex-
posed to water erosion and land degradation.

Many parts of Iran face various types of land degra-
dation of which water erosion is one of the most import-
ant (Masoudi & alii, 2006; Masoudi & Zakerinejad, 2010; 
Shahrivar & alii, 2012; Zakerinejad & Maerker, 2014; Zak-
erinejad & alii, 2018; Zabihi & alii, 2018; Arabameri & alii, 
2019a,b; Hosseinalizadeh & alii, 2019a). Recently large ar-
eas of arid and semiarid landscapes in Iran have been de-
stroyed and converted to bare land by the effects of gully 
erosion, rill erosion, landslides and badlands (Arabameri & 
alii, 2019b). The channel type erosion (rill and gully) occur 
where concentrated water flows with high velocity eroding 
the highly erodible soils especially in the plateau areas (Ma-
soudi & alii, 2006; Rahmati & alii, 2016). Overland flow, 
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subsurface water movement, and soil piping (Kirkby & 
Bracken, 2009; Poesen & alii, 2003; Poesen & alii, 2018) are 
processes that provoke rill but also gully erosion. Since gul-
ly erosion is one of the most intensive soil erosion processes 
(Maerker & alii, 2003, 2011), particular attention should be 
addressed to these types of soil loss. The term “badland” 
refers to parts of unconsolidated sediments or poorly con-
solidated bedrock with low or no vegetation, which are not 
suitable for agriculture because of their intensely dissected 
landscape (Zakerinejad & Maerker, 2014).

Various researchers have studied the factors and mech-
anisms, which affect different types of water erosion in 
many parts of the world. However, processes like gullying, 
piping and landslides have been studied less intensively 
than sheet erosion processes (Kheir & alii, 2007; Nazari 
Samani & alii, 2010; Lucà & alii, 2011; Shahrivar & alii, 
2012; Zakerinejad & Maerker, 2015; Gómez-Gutiérrez & 
alii, 2015; Gómez-Gutiérrez & alii, 2015; Lombardo & 
alii, 2016; Kornejady & alii, 2017; Cama & alii, 2017; Az-
areh & alii, 2019; Hosseinalizadeh & alii, 2019b; Yang & 
alii, 2021). Most gullies occur in unconsolidated materi-
als, including colluvial and alluvial areas as well as deeply 
weathered substrates (Ahmadi & alii, 2007; Kirkby & alii, 
2009; Maerker & alii, 2008; Conforti & alii, 2011; Frankl 
& alii, 2013) or aeolian deposits such as loess formations. 
Regarding to some studies the most important types of wa-
ter erosion in the Zagros Mountains in Iran are rill, gully, 
landslide and badland erosion (Soufi, 2002; Rahmati & alii, 
2017; Pourghasemi & alii, 2017; Zakerinejad & alii, 2018; 
Azareh & alii, 2019). In the recent decades, the negative 
impact and extent of water erosion, especially gully erosion 
and badland generation on human welfare and agricultural 
land in Iran increased drastically (Soufi, 2002; Zakerinejad 
& Maerker, 2014; Arabameri & alii, 2019a,b).

Prediction of susceptible areas to water erosion with 
available and low cost data is one of the main objects of 
this study. Many empirical models such as PSIAC, EPM, 
RUSL, USPED were applied for evaluating water erosion in 
Iran but these models are time consuming in terms of data 
collecting and also requiring special skills for the assess-
ment of the input parameters (Ahmadi, 1995; Ahmadi & 
alii, 2007; Asadi & alii, 2017; Arekhi & alii, 2012). However, 
only a few studies exist that assess the spatial distribution 
of different types of water erosion on larger areas consider-
ing the relevant environmental driving factors.

There are many factors that are influencing rill and gul-
ly erosion processes like the characteristics of the catch-
ment, soil type, climate condition, vegetation, tectonic and 
land use type as well as topography (Vandekerckhove & 
alii, 2001; Conforti & alii, 2011; Zakerinejad & alii, 2018; 
Conoscenti & alii, 2018; Arabameri & alii, 2019 b,c; Kheir 
& alii, 2007; Nazari Samani & alii, 2009; Zakerinejad & 
Maerker, 2014).

This study uses an innovative approach to predict the 
susceptibility of water erosion processes in the South of 
Semirom City in Isfahan Province (Central Iran). The area 
is heavily impacted by rill and gully erosion. Water erosion 
occurs in this area due to a complex topography, highly 
erodible soils and mismanagement of soil and land use/
land cover (LULC) resources.

Fig. 1 - Study area of the Semirom catchment in the Southern part of 
Isfahan Province.

The main aim of the study is to assess the potential spa-
tial distribution of the three most predominant types of 
water erosion processes (rill, gully and badland), in relation 
to the most important triggering factors.
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STUDY AREA

The study area is located in the Semirom catchment in 
the Southern part of Isfahan province in the Zagros Moun-
tains (ZM) (Central Iran, 51.774'E and 31.148 N; fig.1) and 
covering ca. 108.585 ha. The ZM belt extends for about 
1500 km from the Taurus Mountains of southeastern Tur-
key, through southwestern Iran, ending near the Straits of 
Hormuz at the mouth of the Persian Gulf. The annual av-
erage precipitation is about 322 mm and the mean annual 
temperature is 23°C. The information we used in this study  
is based on the national geology data.

(1:100000, Geological Survey and mineral exploration of 
Iran), the geology consists of the following formations: Quar-
tenary (31.42%), Mishan (mixed Marls) 4.92%, and Gourpi 
(Marls and limestones) 16% (Geological Survey and mineral 
exploration of Iran). The lowest elevation is 1797 m and the 
highest peak of the ZM in the study area rises to 3171 m. This 
catchment is characterized by a heavily dissected terrain with 
steep slopes, low vegetation and channels with dendritic pat-
tern, which rapidly incise and extend headwards.

The landuse/landcover (LULC) of the study area are 
including poor range land with 72621 ha (66.8%), forest 
land 14901 ha (13.7%), mixed range and forest land 13222 
ha (12.1%), agriculture 6451 (5.9%) and bare land 744 ha 
(0.68%). Rill features are most dominant on the slopes and 
show depths of less than 30 cm, while the gullies are mostly 
located in the central part of the study area and in the west 
of the catchment. Badland features are frequent in the west 
and east of the study area. Most of the gullies are shallow 
with depths around 2-3 m and lengths between 30-50 m.

Fig. 2 - Gully erosion features in the study area.

MATERIAL AND METHODS

In this research, we followed the subsequently men-
tioned working steps to predict the water erosion suscepti-
ble areas (rill, gully and badland):

i)	 In the first step the locations of characteristic gullies, 
rills and badlands were digitized using Google Earth 
(GE) images, aerial photos and fieldwork. The different 

erosion forms are reported as polygon shapes for gullies 
and badlands and polyline shapes for rill features. In 
this study the rill features were digitized as polylines for 
the reason that these features have widths of less than 
30 cm, while the gully and badlands features are larger.

Subsequently, we converted the polygons and polylines 
into equally spaced points, which are congruent with the 
raster cell centroids (fig. 4).

ii)	 In the second step we prepared the predictor variables 
that are driving the erosion processes. These continu-
ous predictor variables include: lithology, soil texture, 
land use/land cover (LULC), climate (annual precipita-
tion), NDVI (Normalized Difference Vegetation Index) 
and topography indices such as: Topographic Wetness 
Index (TWI), vertical distance to channel network, 
convergence Index, plan curvature, profile curvature, 
aspect, flow length, elevation, slope, Stream Power 
Index (SPI) (table 1). These predisposing factors have 
been selected according to previous research in this 
area and areas with similar climates and landscape as 
our study area (e.g. Zakerinejad, 2019; Rahmati & alii, 
2016; Zakerinejad & Maerker, 2014).

We converted aspect into northness and eastness as 
proposed by Roberts (1986).

The topographic parameters were subsequently 
checked for autocorrelation using the Pearson correlation 
coefficient in order to prevent redundant information in 
the model. According to the Cauchy–Schwarz inequality 
criteria it has a value between +1 and −1, where 1 is total 
positive linear correlation, 0 is no linear correlation, and −1 
is total negative linear correlation (fig. 3).

Table 1 - The Environmental layers used as independent variables in the 
stochastic modelling approach.

Independent indices Method

Topographic wetness Index Olaya & Conrad, 2008

Stream Power Index Olaya &Conrad, 2008

Slope Zevenbergen & Thorn, 1987

LS-index Olaya & Conrad, 2008

Profile Curvature index Olaya & Conrad, 2008

Flow length Olaya & Conrad, 2008

Catchment area Olaya & Conrad, 2008

Curvature index Zevenbergen & Thorn, 1987

Convergence Index Köthe & Lehmeir, 1993

Vertical distance to networks Olaya & Conrad, 2008

Aspect Zevenbergen & Thorn, 1987

Elevation Preprocessed in ArcGIS10.3

NDVI Extract from Landsat 8, 2015

Soil texture Field collection

Climate (precipitation) Climate data from Iranian climate center

Land use LULC map prepared in Envi, filed 
work and Landsat ETM data

Lithology From Iranian geology map, 1:100000
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The topographic indices shown in table 1 were extract-
ed in SAGA GIS 7.3.0 (Conrad & alii, 2015) from a SRTM 
DEM with 30 m spatial resolution and were then converted 
into an ASCII format used as input for the model runs.

Before applying the indices, the DEM was preprocessed 

with low pass filtering to extract artefacts and errors, like lo-
cal noise and terraces (Maerker & Heydari, 2009; Vorpahl & 
alii, 2012) using ARCGIS 10.5 (ESRI, 2010). Then, the DEM 
was hydrologically corrected eliminating sinks using the al-
gorithm proposed by Planchon & Darboux (2001) (fig. 5).

Fig. 3 - Persons coefficient correlating of 
the topography indices.

Fig. 4 - Spatial distribution of rill, 
gully and badland features in the 
study area.
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Maximum Entropy Model (MEM)

The best probability distribution is the one that max-
imizes entropy (MEM). Entropy in fact is the uncertainty 
in the selection of an event such as different types of wa-
ter erosion (rill, gully, landslide, badland). The theoretic 
notion of entropy quantifies the bias of a probability dis-
tribution. The entropy H of a probability distribution p is 
defined as

H(x) = H(p) = –∑ p(x)logp(x) = E[log {  1   }]
                           x                                                    

p(x)

Ha(x) is the entropy of X
The Maximum Entropy Model (MEM, Phillips & alii, 

2006) is a general-purpose method for predictions or infer-
ences from incomplete information. Its origins lie in sta-
tistical mechanics. MEM explores applications in diverse 
areas such as ecology, astronomy, portfolio optimization, 
image reconstruction, statistical physics and signal pro-
cessing. We apply MEM here as a general approach for 
presence-only modeling of three different types of water 
erosion (rill, gully and badland). MEM is suitable for all 
existing applications involving presence-only datasets. The 
idea of MaxEnt is to estimate a target probability.

The advantages of MEM are: (1) It requires just pres-
ence data, together with environmental information for 
the whole study area. (2) It can utilize both continuous 
and categorical data, and can incorporate interactions 

between different variables. (3) Efficient deterministic 
algorithms have been developed that are guaranteed to 
converge to the optimal (maximum entropy) probability 
distribution.

Hence it is useful if we have partial knowledge about 
a stochastic process and we have to estimate the underly-
ing probability distribution. The best guess is to choose 
among all distributions that are compatible with our 
knowledge, the one with the highest entropy. In this in-
vestigation, MEM is applied to predict the spatial distri-
bution of different erosion susceptibilities and to reveal 
the most influencing triggering factors. MEM was suc-
cessfully applied in environmental studies dealing with 
presence only data (Elith & alii, 2006; Vorpahl & alii, 
2012; Zakerinejad & Maerker, 2014; Azareh & alii, 2019; 
Rodriguez & alii, 2022). In recent studies, the method was 
used to predict the spatial distribution of soil erodibility, 
landslides and gullies using important environmental pa-
rameters as independent variables (Maerker & alii, 2014; 
Zakerinejad & Maerker, 2015; Mahamane, 2015). To as-
sess the most important variables for the spatial distribu-
tion of water erosion features (rill, gully and badland) in 
this study we applied the MaxEnt software version 3.3.3k 
(http://www.cs.princeton.edu/~schapire/maxent/). The 
model requires presence only data and a set of environ-
mental variables, which are continuously distributed in 
spatial extent (Zakerinejad & Maerker, 2014; Zakerinejad 
& alii, 2018).

Fig. 5 - Flowchart showing the methodology 
used for our research.
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Validation of the MEM model

The performance of the model was evaluated using the 
receiver operator characteristic (ROC) curve for training 
and test data. Values close to 1 indicate that the model pre-
diction is perfect, while values near or below 0.5 indicate a 
random prediction (Phillips & alii, 2006).

In a ROC curve, the true positive rate (sensitivity) is 
plotted over the false positive rate (1-specificity) for all pos-
sible cut-off points (Swets & alii, 2000). The area under 
curve (AUC) is a summary measure of the accuracy of a 
quantitative diagnostic test. According to (Hosmer & Le-
meshow, 2000), AUC values exceeding 0.7/0.8/0.9 indicate 
acceptable/excellent/outstanding predictions. The ROC 
were derived for train dataset comprising 70% of the data 
and a test dataset that contain 30% of the data in order to 
validate the model performance. The contribution of the 

most important variables for the model is illustrated in the 
variable importance graph. Finally, in this research, we also 
show the most important variables plotted as a susceptibil-
ity or suitability over the range of the variable parameters, 
identifying the relevant parts of the specific spectra con-
tributing to the model for each type of water erosion (rill, 
gully and badland).

RESULTS

Model performance for rill, gully and badland erosion

The MEM was applied to model three different types 
of water erosion (rill, gully and badland) in the Semi-
rom catchment. The model was trained using 70% of the 
mapped points of rill, gully and badland features as target 
or dependent variable, and the raster type environmental 
layers as independent variable. The resulting model is then 
validated using the randomly selected 30% of the mapped 
gully, rill and badland dataset. fig. 6 shows the ROC graph 
and integral (area under curve, AUC) for training data 
with AUC values of 0.920 for rill erosion, 0.979 for gully 
erosion and 0.737 for bad land erosion. The validation test 
data yield AUC values of 0.902, 0.974 and 0.707 for rills, 
gullies and badlands respectively. According to Hosmer 
& Lemeshow (2000) these values indicate an outstanding 
performance for rill and gully erosion both for training and 
test datasets while an acceptable performance for badland 
erosion was obtained. Hence, the models can be consid-
ered as highly robust in terms of sensitivity and specificity 
for the prediction of water erosion. Subsequently, the mod-
el was applied for the entire catchment in order to obtain 
the spatial distribution of specific susceptibilities for the 
single erosion processes. Finally, we combined the specific 
single process susceptibilities or occurrence probabilities 
in one map using probability threshold values for each soil 
erosion type.

Fig. 6 - AUC for three different types of water erosion from: rill (a), gully 
(b) and badland (c).

C
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Important variables for the prediction of water erosion

The most important variables to explain the spatial dis-
tribution of rill erosion susceptibilities are: land use with 
a contribution of 19.40%, elevation with 18.4%, lithology 
with 15.1% and LS-factor with 12.1% contribution.

For gully erosion the most important variables are: ver-
tical distance to channel network with 24.8% contribution, 
convergence index with 15.8%, slope with 13.2% and soil 
texture with 10.2% contribution.

Regarding badland erosion MEM reveals as most im-
portant variable the lithology with 21.3% contribution, 
slope with 15.6%, NDVI with 14.2% and land use with 
13.4% contribution.

Specific response of the most important variables used in the 
MEM approach

In this study we distinguish various types of rill, gully 
and badland erosion based on the specific response curves 
of the most important variables in the MEM application.

In fig. 8 we illustrate the four most important variables 
including, land use, elevation, lithology and LS factor for 
the rill erosion.

The LS factor (fig. 8a) shows a value range of more than 
20 with very high probabilities for rill erosion. The LULC 
response curve (fig. 8b) reveals that the classes of rangeland 
with poor vegetation, dry farming and bare land are the 
most sensitive ones to rill erosion.

The elevation graph (fig. 8c) shows that the area ranging 
between 2000-2600 m is more susceptible to rill erosion 
whereas the lithology response curve (fig. 8d) indicates 
marls and alluvial sediments as the most sensitive ones to 
rill erosion, while the other classes consisting mostly of 
calcite and dolomite have less susceptibility to rill erosion. 
As mentioned before, gully erosion is mainly depending on 
the vertical distance to the network, convergence index, 
soil texture, and slope. The convergence index response 
curve for gully erosion (fig. 8e) point to values around 0 
with slight emphasis on the negative values showing higher 
probabilities. The vertical distance to the river networks 
(fig. 8f), is characterized by a range of 0-400 m indicat-
ing the high potential for the gully erosion while the val-
ues more than 400 m have less probability because of the 
increasing distance from the stream network and hence 
smaller catchment areas or lower connectivities.

The soil texture graph (fig. 8g) highlights soil texture 
classes 2 and 3 (silty loam and silty clay loam) with the 
highest probabilities for gully erosion while the sandy clay 
areas have a low probability to rill erosion.

The slope graph (fig. 8h) also indicates that slope values 
between 0 and 20% are related to high probabilities, while 
an increase of slope over 20% result in a decrease of prob-
ability in the study area.

Regarding the MEM results the most important indica-
tors for the prediction of susceptible areas of badland ero-
sion are: land use, lithology, NDVI and slope.

Fig. 7 - Variable importance’s for the predicted types of 
water erosion.
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a) LS-factor

LS-factor

LS-factor

c) Elevation

b) Landuse

e) Convergence index f) Vertical distance to network 

g) Soil texture h) Slope

d) Lithology

Fig. 8a -Response curves of the most important variables for rill erosion (a,b,c,d) and gully erosion (e,f,g,h)
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The NDVI response curve for badland erosion (fig. 8i) 
shows values of less than 0.10 having a higher probability of 
badland erosion. An increase of the NDVI value decrease 
the probability of badlands. That means, a higher density of 
vegetation cover can protect the area from badland erosion.

The lithology response curve (fig. 8j) indicates that the 
areas with alluvial and marl formations are more prone to 
badland erosion compared to the areas with calcite and 
limestone formations. The slope graph (fig. 8k) demon-
strates high probabilities at slopes between 0 and 30% and 
thus, a higher risk of badland erosion.

Regarding to the LULC graph (fig. 8l), badlands erosion 
is more probable on barren and poor rangeland classes, 
while the area with forest and dense vegetation character-
ize low probabilities for badland formation.

Specific response of the most important variables used in the 
MEM approach

In this study we distinguish various types of rill, gully 
and badland erosion based on the specific response curves 
of the most important variables in the MEM application.

In fig. 8 we illustrate the four most important variables 
including, land use, elevation, lithology and LS factor for 
the rill erosion.

The LS factor (fig. 8a) shows a value range of more than 
20 with very high probabilities for rill erosion. The LULC 
response curve (fig. 8b) reveals that the classes of rangeland 
with poor vegetation, dry farming and bare land are the 
most sensitive ones to rill erosion.

The elevation graph (fig. 8c) shows that the area rang-
ing between 2000-2600 m is more susceptible to rill ero-
sion whereas the lithology response curve (fig. 8d) indicates 
marls and alluvial sediments as the most sensitive ones to 
rill erosion, while the other classes consisting mostly of cal-
cite and dolomite have less susceptibility to rill erosion. As 
mentioned before, gully erosion is mainly depending on the 
vertical distance to the network, convergence index, soil tex-
ture, and slope. The convergence index response curve for 
gully erosion (fig. 8e) points to values around 0 with slight 
emphasis on the negative values showing higher probabil-
ities. The vertical distance to the river networks (fig. 8f), is 
characterized by a range of 0-400 m indicating the high po-
tential for the gully erosion while the values more than 400 
m have less probability because of the increasing distance 
from the stream network and hence smaller catchment areas.

The soil texture graph (fig. 8g) highlights soil texture 
classes 2 and 3 (silty loam and silty clay loam) with the 
highest probabilities for gully erosion while the sandy clay 
areas have a low probability to rill erosion.

i) NDVI j) Lithology

k) Slope L) LULC

Fig. 8b -Response curves of the most important variables for badland erosion (i,j,k,L).
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The slope graph (fig. 8h) also indicates that slope values 
between 0 and 20% are related to high probabilities, while 
an increase of slope over 20% result in a decrease of prob-
ability in the study area.

Regarding the MEM results the most important indica-
tors for the prediction of susceptible areas of badland ero-
sion are: land use, lithology, NDVI and slope.

The NDVI response curve for badland erosion (fig. 8i) 
shows values of less than 0.10 having a higher probability of 
badland erosion. An increase of the NDVI value decrease 
the probability of badlands. That means, a higher density of 
vegetation cover can protect the area from badland erosion.

The lithology response curve (fig. 8j) indicates that the 
areas with alluvial and marl formations are more prone to 
badland erosion compared to the areas with calcite and 
limestone formations. The slope graph (fig. 8k) demon-
strates high probabilities at slopes between 0 and 30% and 
thus, a higher risk of badland erosion.

Regarding to the LULC graph (fig. 8l), badlands erosion 
is more probable on barren and poor rangeland classes, 
while the area with forest and dense vegetation character-
ize low probabilities for badland formation.

DISCUSSION

As a result of problems arising from water erosion and 
land degradation, different models were applied to estimate 
and predict different types of soil erosion. In this research 
we applied the MEM model for a soil erosion susceptibility 
mapping taking into account different types of water ero-
sion. MEM is a powerful method to assess the influencing 
factors for different water erosion form and features. The 
main advantage of the applied MEM is that this method 
does not require the absent dependent variables. Actually, 
the absence of an erosion feature does not necessarily mean 
that there is no potential for a specific erosion processes that 
might develop in future. Stochastic approaches like statisti-
cal mechanics provide a powerful tool to study the relations 
between locations of water erosion features and correspond-
ing environmental characteristics. The topographic indices 
like slope, convergence index, distance to stream network, 
elevation and LS factor were important variables for the 
prediction of the spatial distribution of water erosion in the 
Semirom catchment. Regarding many studies in areas with 
comparatively homogeneous substrates, soils and land use, 
the spatial distribution of gully areas is mainly depending 
on topographic constraints expressed here as topographic 
indices (Vandekerckhove & alii, 2001; Flügel & alii, 2003; 
Nazari Samani & alii, 2009; Maerker & alii, 2012; Roshani 
& alii, 2013; Yang & alii, 2021).

In our study area, the gullies and especially the gully 
head cuts are frequently situated in areas with high SPI 
(Stream Wetness Index) and high amounts of silty textures 
in the top soil. The most important factors that lead to 
the development of gullies in the study area are: vertical 
distance to stream network, convergence index, slope and 
soil texture. It means, that those areas are susceptible that 
show low slopes (0-15%), low position above stream net-
work (less than 300 m), concave surface (negative curvature 

Fig. 9 -Predicted map of rill, gully and badland erosion from upper left 
to right.



193

values) and mostly low elevation (Zakerinejad & Maerker, 
2014; Avand & alii, 2019; Arabameri & alii, 2021)

Rill erosion is one of the most abundant types of soil 
loss and subject of many physical based erosion models e.g. 
USLE, RUSLE (Revised USLE, Renard & alii, 1997) and 
USPED (Mitasova & alii, 1996). However, these physical 
based models differ considerably in the processes they rep-
resent, their data requests and complexity (Merritt & alii, 
2003; Bosco & alii, 2015). As mentioned above, frequently 
applied models such as USPED and RUSLE do not consid-
er the sediment yield from gullies, badlands, stream banks 
and stream bed erosion (Mitasova & alii, 1996; Maerker & 
alii, 2009; Zakerinejad & Maerker, 2015). In this study, the 
more important variables for prediction and mapping of rill 
erosion susceptibility are land use, elevation, lithology and 
LS factor. Areas with poor rangeland and bare land were 
associated with high risk of rill erosion particularly in the 
western and southern part of the catchment. Rill erosion 
appears mostly in the range of 1800-2200 m a.s.l., while the 
erosivity of water in the flat areas decrease (Yang & alii, 
2021; Stefanidis & alii, 2021). Areas with high elevation 
that are less affected by grazing and intensive human use, 
show a lower susceptibility of rill erosion compared to the 
low-lying- or flat areas (Meledje & alii, 2021). In terms of 
the lithology, we observed that areas with high calcite and 
dolomite in the North and Northeast of the area are more 
resistant to water erosion due to the fact that these areas de-
velop normally less erodible soils (Zakerinejad & alii, 2018;

Zhang & alii, 2022). The LS factor has also been inte-
grated in many empirical models for rill and sheet erosion. 
We show also in our application that it is one of the most 
important indices for rill erosion. High and steep areas are 
characterized by high LS factor values (Kumar & Kushwa-
ha, 2013; Asadi & alii, 2017; Karásek & alii, 2022.)

Badland erosion is one of the most complex types of 
water erosion in many parts of the Zagros Mountains. The 
areas affected by this type of water induced sediment loss 
are completely unusable for any agriculture or settlement 
activity. In other words, the areas with badlands have se-
riously been destroyed. Our results show that lithology, 
slope, NDVI and LULC are the most relevant indictors for 
badland erosion. Areas in the Southwest and Northwest 
of the study area are illustrating a high susceptibility for 
badland erosion . High NDVI values, that indicate high 
vegetation cover, protect the soil from degradation. Typi-
cally, areas with steep slopes (more than 15%) demonstrate 
a high susceptibility for badland degradation processes due 
to the erosive power of runoff that wash away the fertile 
topsoil layer.

In general, investigations of the spatial relationships 
between locations of rill, gully and badland erosion using 
MEM and GIS tools show, that areas of low elevation, low 
slopes and flat topography, are characterized by surface 
runoff concentration and highly erodible alluvial deposits 
with high amounts of salts. These are the most prone areas 
to erosion processes and related forms and features. Soil 
texture related to both gullies and badlands shows, that 
high amounts of silt and silty loam are more susceptible to 
gully erosion. These results have been confirmed by oth-
er local studies (Bonilla & alii, 2010; Le Roux & alii, 2012; 

Golestani, & alii, 2014; Zakerinead & alii, 2018). The re-
sults of this study presented a time-saving, illustratable, and 
comparatively accurate method for rill, badland and gully 
mapping. Although our results show, that these types of soil 
erosion dominate around 50% of our study area, there are 
still other types of soil loss, like sheet erosion, bank erosion 
and landslide that need to be considered in future research 
in order to model water erosion in a holistic way.

Fig. 10 -Spatial distribution of water erosion (rill, gully and badland) of 
the study area.

CONCLUSION

Gully, rill and badland features are common geomor-
phological problems in arid and semi-arid regions; there-
fore, it is essential to develop methods to predict water 
erosion with simple but highly accurate models. Although 
the approach applied in this study, identifies the susceptible 
areas, this is a mayor step forward in order to apply quan-
titative soil erosion models that need spatially distributed 
information on the driving factors but also on the spatial 
distribution of water erosion features and forms. The spatial 
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risk assessment of water erosion (rill, gully and badland) in 
the Semirom catchment was carried out by means of a sto-
chastic model (MEM) and a detailed terrain analysis as well 
as additional environmental variables. One of the issues of 
existing maps of water erosion in Iran is the fact, that they 
have been mostly prepared in a qualitative way and there is 
a lack of quantitative estimates of different types of water 
erosion. Identifying the areas, that are prone to, or suscep-
tible to water erosion, especially in arid and semi-arid areas 
with the available data empirical modelling may empower 
ways to endorse sustainable development. In this case, ap-
plying the stochastic model as an approach to determine 
the susceptible areas for different types of water erosion, we 
show that especially in a large catchment this approach is 
very powerful and yield valuable results that are useful for 
land use management and rural policy makers to establish 
the best soil conservation practices. One of the advantag-
es of the MEM model in comparison with other stochastic 
models is that it only needs presence only data.

The results of this research are consistent with studies 
that applied the MEM model to analyze other (i.e. non-gully) 
natural hazards such as landslides (Chen & alii, 2017; Korne-
jady & alii, 2017; Pandey & alii, 2018), debris flows (Lombar-
do & alii, 2016). In the study area soil erosion is concentrated 
especially in the areas with low vegetation. Actually, bare 
soil is highly susceptible to soil erosion therefore the protec-
tion of bare soil to reduce soil loss should be guaranteed by 
an appropriate cultivation (Lesschen & alii, 2007).

The validation of the MEM model shows that the mod-
el predictions for rill and gully are outstanding, while the 
result for badland illustrate an acceptable performance. 
Our study reveals that the combination of a stochastic 
model combined with remote sensing data and GIS tools 
yield valuable results for a proper landuse planning and soil 
erosion mitigation management. The simplicity and the rel-
ative low data requirements of the applied method allows 
an effective application also in other regions especially in 
arid and semi-arid areas of the world. This study empha-
sized the vulnerability of the study area in terms of the 
susceptibility towards different types of soil erosion. Thus, 
contributes to a progress in sustainable management and 
protection of these susceptible areas.
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