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Abstract: Ondráčková L., Surian N., Nývlt D & Stuchlík R., 
Downstream variability of channel morphology and bed material in the braided 
Keller River, James Ross Island, Antarctica. (IT ISSN 0391-9838, 2020).

Changes in sediment supply and water availability in rivers are asso-
ciated with ongoing climate change and glacier melting. The processes 
connected with increasing temperatures largely determine braidplain ac-
tivity within glacier forefields. This work focuses on downstream changes 
in channel morphology (i.e., channel width and braiding intensity) and 
bed material (i.e., petrological types and clast roundness), as well as possi-
ble controlling factors (i.e., sediment sources and sediment connectivity). 
The study area is the Keller River catchment located on the James Ross 
Island (JRI), Antarctica. This paper describes the 8.6 km-long Keller 
River in terms of morphology, including river braidplains, sediment 
sources and connectivity within the catchment. Eight sediment sources 
and three types were identified: one moraine sediment source, four de-
bris-flow-dominated sediment sources and three fluvial-flow-dominated 
sediment sources. Along with high sediment connectivity, the occur-
rence of lateral sediment sources from tributaries significantly impacted 
downstream changes in channel morphology and processes. Channel 
width and braiding intensity showed an increasing downstream trend, 
although the channel width trend was irregular. As for bed material,  
 

 

sediment sources markedly control clast roundness with little effect of 
petrological properties.

Key words: Proglacial stream, Channel width, Clast roundness, 
Sediment sources, Sediment connectivity, Antarctica.

Riassunto: Ondráčková L., Surian N., Nývlt D & Stuchlík R., 
Variabilità longitudinale delle caratteristiche morfologiche e sedimentologi-
che in un corso d’acqua a canali intrecciati: il Fiume Keller, Isola James Ross, 
Antartide. (IT ISSN 0391-9838, 2020).

Variazioni della disponibilità di sedimento e delle portate liquide 
nei corsi d’acqua sono legate ai cambiamenti climatici in atto e alla ri-
duzione delle masse glaciali. L’aumento delle temperature e i processi 
ad esso associati controllano fortemente la dinamica dei corsi d’acqua a 
canali intrecciati negli ambienti proglaciali. Il presente lavoro si focaliz-
za sulla variabilità longitudinale delle caratteristiche morfologiche (i.e., 
larghezza dell’alveo e indice d’intrecciamento) e sedimentologiche (i.e., 
petrografia e arrotondamento dei clasti) e sui possibili fattori di controllo 
(i.e., sorgenti e connettività dei sedimenti). Nel lavoro viene analizzato 
il Fiume Keller (8.6 km di lunghezza) per quanto concerne: a) la mor-
fologia dell’alveo e della piana alluvionale e b) sorgenti e connettività 
dei sedimenti a scala di bacino. Otto sorgenti di sedimento, distinte in 
tre tipologie, sono state identificate: una da depositi glaciali, quattro con 
prevalenza di colate detritiche, tre con prevalenza di trasporto fluviale. 
Oltre ad un’elevata connettività dei sedimenti, l’apporto di sedimento 
dai tributari influisce in modo significativo sulla variabilità longitudinale 
della morfologia e dei processi del corso d’acqua. La larghezza dell’alveo 
e l’indice d’intrecciamento mostrano un incremento progressivo verso 
valle, sebbene l’andamento longitudinale della larghezza abbia una certa 
irregolarità. Per quanto riguarda le caratteristiche sedimentologiche, le 
sorgenti di sedimento controllano in modo rilevante l’arrotondamento 
dei clasti, mentre hanno un effetto limitato sulla petrografia dei clasti.

Termini chiave: Corso d’acqua proglaciale, Larghezza alveo, Ar-
rotondamento clasti, Sorgenti di sedimento, Connettività dei sedimenti, 
Antartide.

INTRODUCTION

It is well known that river morphology and processes 
are closely connected to catchment characteristics (e.g., li-
thology, tectonics and vegetation cover) and processes (e.g., 
slope instability and sediment connectivity) (Fryirs & alii, 
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2007; Cavalli & alii, 2013). Increasing our understanding of 
such relationships requires investigating appropriate fluvial 
systems, chiefly those where human impact is low or ab-
sent. Proglacial rivers are often ideal for such investigations 
(Carrivick & alii, 2013). The transport of bed material in 
proglacial rivers has been analysed in several studies (Ash-
worth & Ferguson, 1986; Ferguson & alii, 1992; Wathen & 
alii, 1995; Knighton, 1998; Beylich & alii, 2017; Carrivick & 
Heckmann, 2017; Kammerlander & alii, 2017; Ondráčková 
& alii, 2018; Ondráčková & alii, 2020), but few studies have 
compared channel and catchment processes (e.g., Ashmore 
& Day, 1988; Rachlewicz, 2007; Bartsch & alii, 2009; Car-
rivick & alii, 2013; Kidová & alii, 2016).

Sediment transport in various localities and previous-
ly glacierised areas has been described by many research-
ers (Hambrey, 1994; Maizels, 1997; Hodson & alii, 1998; 
Bhutyiani, 2000; Bogen & Bønsnes, 2003; Marren, 2005; 
Rachlewicz, 2007; Slaymaker, 2011; Marren & Toomath, 
2014; Carrivick & Heckmann, 2017; Park & Hunt, 2017; 
Weckwerth & alii, 2019; Mancini & Lane, 2020), but few 
such studies pertain to Antarctica (Carrivick & alii, 2012; 
Davies & alii, 2013; Kavan & alii, 2017; Kavan & Nývlt, 
2018; Ondráčková & alii, 2018; Sroková, 2019). Antarc-
tica is a special and vulnerable region that deserves our 
attention. It is almost entirely without vegetation cover 
and save for some terrestrial algae, cyanobacteria, lichens 
and mosses, which stabilise catchment surfaces little and 
affect only areas with sufficient nutrients (Navas & alii, 
2008, Barták & alii, 2015; Marečková & Barták, 2016; 
Nývlt & alii, 2016; Chattová, 2018; Ruiz-Fernández & alii, 
2019; Hrbáček & alii, 2020) and therefore in some other 
Antarctic areas can have a quite important effect. The 
proglacial areas are affected by the harsh climatic condi-
tions (van Lipzig & alii, 2004; Láska & alii, 2010; Láska & 
alii, 2011; Glasser & alii, 2012) with a combination of the 
influence of glaciers, snow cover and permafrost degrada-
tion (Smellie & alii, 2008; Baewert & Morche, 2014; Nývlt 
& alii, 2014; Oliva & Ruiz-Fernández, 2015; Hrbáček & alii, 
2016).The morphological and sedimentary conditions of 
glacier outwash plains depend on several other factors: the 
geomorphic and tectonic history of the river catchment, on-
going climate change and base level variations (Lane & alii, 
1997; Baewert & Morche, 2014; Knight & Harrison, 2014; 
Kociuba, 2017, Strzelecki & alii, 2018; Weckwerth, 2018).

Several works from many regions worldwide have 
pointed out the longitudinal trend of reduced bed material 
size, i.e., “downstream fining” (e.g., Ferguson & alii, 1996; 
Rice & Church, 1998; Surian, 2002; Gasparini & alii, 2004; 
Piégay & alii, 2006; Rice & Church, 2010; Weckwerth & 
alii, 2018; Sklar & alii, 2020). Three mechanisms contribute 
to downstream fining: abrasion, hydraulic sorting or trans-
port and in-situ weathering (Knighton, 1998). Tributaries 
and other lateral sources, such as banks, can introduce 
sediment to the main stream causing discontinuities in the 
downstream fining process (Ferguson & alii, 1996). Tribu-
tary size, as well as the size of sediments carried by the trib-
utary, are two factors that determine whether a tributary 
will change bed material characteristics (Knighton, 1998).

Sediment sources and connectivity are key aspects con-
trolling downstream changes in bed material. Sediment con-

nectivity refers to the relationship between components in a 
geomorphic system and plays a crucial role in sediment trans-
port (Baartman & alii, 2013; Geilhausen & alii, 2013; Heck-
mann & alii, 2018). As particles are transported downslope 
and delivered to channels, the size of sediments produced on 
hillslopes evolves (Sklar & alii, 2020). Sediments produced in 
the uplands, where hillslopes and channels are closely con-
nected, can influence downstream fining trends in a channel 
(Ferguson & alii, 1996; Sklar & alii, 2020).

In this paper, we present the findings of a study investi-
gating the role of sediment sources in channel morphology 
and bed material characteristics in the Keller Catchment 
(James Ross Island [JRI], East Antarctic Peninsula). The 
Keller Catchment was selected for its position in a changing 
polar environment and its proximity to the Czech Antarctic 
station. There is no existing fluvial geomorphological study 
from this sector of Antarctica. The aims of this study are (a) 
to analyse the downstream changes of channel morphology 
and bed material in the Keller River and (b) to explore the 
controlling factors of such downstream changes in a braid-
ed river under natural conditions.

STUDY AREA

The Keller Catchment is located on the JRI (64°10’S; 
57°45’W), the JRI’s total surface area is 2450 km² and is lo-
cated in the north-western Weddell Sea behind the Antarc-
tic Peninsula (fig. 1), which acts as an orographic barrier. Its 
northernmost part, the Trinity Peninsula, is separated from 
the JRI by the 6-24 km-wide and 450-1600 m-deep Prince 
Gustav Channel (Camerlenghi & alii, 2001).

The study area is approximately 15 km away from the Jo-
hann Gregor Mendel Czech Antarctic Station. The mean el-
evation of the Keller River catchment is roughly 370 m a.s.l., 
and its 31 km2 catchment area is bounded by the periphery 
of the Davies Dome Glacier, Medina Peak (199 m), Sekyra 
Peak (553 m), Lookalike Peaks (706 m) and the lateral mo-
raine of the Whisky Glacier (Nelson & alii, 1975; Czech 
Geological Survey, 2009). The most important glaciers here 
are Davies Dome, Whisky Glacier and Unnamed Glacier in 
the upper part of the catchment (Engel & alii, 2012).

The mean annual air temperature in the vicinity of Jo-
hann Gregor Mendel station at 10 m a.s.l. was -6.9 °C from 
2006-2014 (Hrbáček & alii, 2016), with January being the 
warmest month (+8.0 °C) and July and August (-30.0 °C) be-
ing the coldest months (Láska & alii, 2010; 2011). The region 
sees over 200 positive degree days and 100 freeze-thaw days 
(days in which there are both negative and positive tempera-
tures with at least one value greater than ±0.5 °C; cf. Michel 
& alii, 2014) per year, which vary highly year by year. Precip-
itation in this area mostly consists of snow (about 450 mm/
year), mainly from March to November (van Lipzig & alii, 
2004; Hrbáček & alii, 2016). Because of the area’s topogra-
phy, most snow cover is blown away during windstorms.

Landforms within braidplain are created by the exten-
sive Cretaceous mudstone and sandstone rocks covered in 
layers of massive basalts and hyaloclastite breccia boulders 
(Kňažková & alii, 2020; Mlčoch & alii, 2020). The catch-
ment can be separated into three parts based on geology. 
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Fig. 1 - Location of the Keller Catchment (A - Antarctic Peninsula; B - James Ross Island; C - Ulu Peninsula and the Keller Catchment).

The upper part, which is made up of Neogene hyaloclastite 
breccias and basalts. The middle part, which is composed 
of Cretaceous sandstones and siltstones (Santa Marta For-
mation). The lower part and surrounding areas, which are 
covered by Holocene periglacially reworked subglacial till 
(Mlčoch & alii, 2020). Geological map of the Keller Catch-
ment is presented in fig. 2. The entire catchment is under-
lain by permafrost with seasonal thawing of the active layer 
usually 0.5-0.6 m thick (Hrbáček & alii, 2017).

This part of the JRI is one of the largest deglaciated 
areas in Antarctica with small remaining glaciers (Engel & 
alii, 2012). Regarding the deglaciation of this area, altitudes 
between 20-50 m have been ice-free since 12.9 ± 1.2 ka 
(Nývlt & alii, 2014). According to Nývlt & alii (2014) and 
Glasser & alii (2014), most of the Keller Catchment has 
been ice-free since 6.7 ± 0.3 ka.

The length of the Keller River is 8.6 km. Its starting 
position was delimited from a Digital Elevation Model 
(DEM) and verified in the field, but it should be noted that 
during the ablation period of the glaciers and snowfield, 
this position can differ with each season. The stream ends 
at an inlet of Brandy Bay. The Keller River is a confluence 
of small streams in the uppermost parts of the catchment 
under Lookalike Peaks that stem from the melting Un-
named Glacier. The most important tributary is the Mono-
lith River running out of Monolith Lake, which is filled by 
two unnamed streams and melting snowfields. The Keller 
River ends in Brandy Bay following its confluence with the 
Monolith River. Both rivers are characterised by braided  

patterns, the presence of channel bars and many confluences 
with side-channels. Other tributaries also act as important 
sediment sources (see fig. 4).

MATERIAL AND METHODS

Preliminary analysis and field work design

Pre-selection of the studied catchment together with 
the sediment sampling sites was done before the Czech 
Antarctic Expedition in austral summer 2018 (January- 
March 2018). For preliminary analyses, an aerial Orthopho-
to Image (2006), REMA (The Reference Elevation Model 
of Antarctica) model (Howat & alii, 2019) and geological 
and topographical map from the Czech Geological Survey 
(2009) and Mlčoch & alii, 2020) were used (fig. 1 and fig. 2). 
This dataset was pre-analysed in Geographic Information 
System (GIS) environments, namely ArcGIS and QGIS. 
The slope raster, aspect raster and flow accumulation raster 
were derived from the DEM and then combined with the 
glacier locations and stream network to pre-select sediment 
source localities (fig. 3 and fig. 4). A plan for field work and 
sediment sampling was designed before the expedition.

During the austral summer research campaign, a detailed 
geomorphological mapping of the Keller Catchment was 
completed. However, the final selection of sediment sources 
occurred during field work. The sediment source type 
were debris-flow-dominated fans, fluvial-flow-dominated 
fans and moraine source (De Haas & alii, 2015; Tomczyk 
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& Ewertowski, 2017). In total eight representative sediment 
sampling sites in each of the eight defined sediment sources 
were selected (fig. 4). For sediment sampling in the active 
part of the channel, 31 sampling sites were chosen (fig. 4).

Channel morphology

After geomorphological mapping, the active zone of the 
Keller River was analysed in ArcGIS and QGIS. The active 
zone surrounds the 7 km of the length of the river, because 
the first 1.6 km flows within a very narrow valley (fig. 5). 
We then focused on segmentation to obtain a detailed as-
sessment of channel morphology. Along the whole length 
of the Keller River, seven reaches were defined according to 
their differences in longitudinal slope profile, valley mor-
phology, confinement and connection to sediment sources 
and important tributaries (see fig. 5). After that, channel 
width was measured perpendicularly to the centreline of 
the active zone at every 25 m. Along with channel width, 
the braiding index was counted in the number of  active 
flowing channels (Rinaldi & alii, 2011).

Bed material characteristics

Sediment sampling and measuring was carried out at 
selected areas of each sediment source locality (eight sites) 
and along the Keller River (31 sites). Sediments were sam-
pled using a sieving method (Bunte & Abt, 2001) (fraction 
8-16 mm) and processed in a laboratory to define their 
petrography, shape and roundness. Each sample from the 
sediment sources (8 localities) and from the active chan-
nel (31 localities) contained 100 clasts and was collected 
from channel bars. The field sample data were accompa-
nied by their respective GPS positions, site descriptions 
and photo documentation of sites and their surroundings 
(see fig. 4).

Laboratory and petrological analyses of clasts entailed 
(i) identifying petrology using a geological map of the 
northern part of the JRI (Mlčoch & alii, 2020), (ii) mea-
suring the a, b and c axes (Wadell, 1932) and (iii) assess-
ing roundness using the roundness scale by Powers (1953). 
For clast characteristics, the Triplot macro by Graham & 
Midgley (2000) was used.

Fig. 2 - Geological map of the Keller Catchment (based on 
Mlčoch & alii, 2018). 
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Sediment sources and connectivity

To assess sediment supply, it was necessary to analyse 
sediment connectivity. To do this, a raster (fig. 8) was 
used in Cavalli & alii’s (2013) model. SedInConnect 2.3 
software (Crema & Cavalli, 2018) is a freeware tool that 
implements Cavalli & alii’s (2013) approach with further 
improvements. An index of connectivity evaluates the 
potential connection between hillslopes and features act-
ing as targets or storage areas for transported sediment 
(Cavalli & alii, 2013). The method used in this software 
for the computation of the contributing area, a rough-
ness index as the weighting factor for transport sedi-
ments. It has been implemented to adapt the model to 
sediment transfer processes within the catchment, which 
are characterized by contrasting morphology and affect-
ed by hillslope sediment transfer of different type and 
intensity of the source. The connectivity index focuses 
on the influence of topography on sediment connectivity, 
whereas other aspects such as vegetation cover and type, 
the effect of different active layer depths on various lith-
ologies (Hrbáček & alii, 2017) are not taken into account 
(Cavalli & alii, 2013). This model clearly shows the index 
of connectivity in the whole Keller Catchment, especially 
in sediment source subcatchments. We used the DEM for 
delimiting the subcatchments. Selected subcatchments 

with each sediment source were defined previously (fig. 
4). The index of connectivity in the whole catchment, 
selected subcatchments and the whole Keller River is 
shown in fig. 8. This analysis helps to verify the impor-
tance of slope processes as potential sediment sources 
and highlights their influence on channel morphology 
and processes.

RESULTS

River segmentation and channel morphology

Segmentation was carried out taking into account 
similar stream properties, active zones and valleys in the 
surroundings (fig. 3). The Keller River was divided into 
seven reaches (R1 at the spring, R7 at the bay). Reach 1 is 
located in the source area starting at 369 m a.s.l., which 
consists of a single-thread channel in a confined V-shaped 
valley. The first reach, which is 1550 m long with a longi-
tudinal slope of 10.5%, yielded the debris-flow-dominat-
ed sediment at the beginning of the river. Reach 2 begins 
at the active zone of the Keller River. At this reach, there 
is a U-shaped valley and confluence with the right-side 
morainic sediment source. This reach is the longest (2150 
m) and its longitudinal slope is 4.1%. At the beginning 
of Reach 3, a left-side debris-flow-dominated sediment 
source lies, which is very close to the river channel. This 
reach is 775 m long with a longitudinal slope of 2.4%. 
Reach 4 contains another left-side debris-flow-dominated 
sediment source, which is also located at the beginning 
of the reach, and is characterized by a wide active zone 
with several channels. Its length is 1075 m and its longi-
tudinal slope is 2.2%. At the end of Reach 5, which is flat 
and consists of a wide active zone, there is a confluence 
with a left-side debris-flow-dominated sediment source. 
This reach is 825 m long with a longitudinal slope of 
1.8%. Reach 6 is the shortest (750 m) with a longitudinal 
slope of 1.7%. At the beginning of Reach 6 is the Mono-
lith fluvial-flow sediment source tributary on the right; 
on the left lies another large fluvial-flow tributary from 
the Davies Dome Glacier. Here is a wide active zone, 
several channels and well-developed channel bars. The 
last left-side fluvial-flow-dominated sediment source lies 
at the final reach, Reach 7. Its right slope is roughly 3-4 
meters high and is 1350 m long with a longitudinal slope 
of 1.6%. It has a wide active zone, several channels and 
bars and braided morphology. Reaches 1 and 2 are con-
fined, Reaches 3 and 4 are partly confined and Reaches 5, 
6 and 7 are unconfined.

Fig. 5a shows channel width and corresponding lon-
gitudinal variability. The active zone starts after 1550 m 
from the spring. At every 25 m following the start of the 
active zone, the channel width was measured with an or-
thophoto image and also verified using the DEM. The 
most important tributaries (sediment sources) are indi-
cated using black arrows. For clarity, a scale of confine-
ment and a line identifying reaches are also presented. 
The trend shows an increase in channel width moving 
downstream (the maximum width of 108 m is reached 

Fig. 3 - The Keller River segmentation and identification of the seven 
reaches.
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7.8 km away from the spring), but also demonstrates sig-
nificant variability. Fig. 5b outlines the braiding index 
and longitudinal variability. The symbology for tributar-
ies, confinement and reaches is the same as in the case 
of channel width. The trend shows increased braiding 
intensity moving downstream. The maximum braiding 
index was 8 located at 7.8 km away from the start of the 
active zone, which corresponds to the maximum channel 
width in the relative flat area at the beginning of the last 
reach.

Downstream changes in bed material characteristics:  
lithological composition and roundness

The geological map of the Keller Catchment (fig. 2) 
shows some differences in the lithological composition of 
the area. We should note that while the whole area was 
glacially reworked, the main petrological types among 
the clasts are Cretaceous sandstones, and Neogene basalts 
and palagonites (from the hyaloclastite breccias). The 
downstream change of each dominant petrological type is 
presented in fig. 6. Among 31 sampling sites in the active 

channel, the most dominant types were sandstone (usual-
ly more than 50%) and basalt (approximately 30%), with 
the remainder being palagonites. Overall, sandstones and 
basalts showed a slight decreasing trend along the flow of 
the river, while palagonite rates increased.

Another important clast characteristic is roundness. 
Clast changes, along with the longitudinal profile of the 
Keller River, are presented in fig. 7. The most important 
degrees of roundness are sub-angular (SA, denoted in 
green) and sub-rounded (SR, denoted in red), while the 
more extreme categories of angular (VA+A, denoted in 
black) and rounded (R+WR, denoted in grey) are com-
plementary here to other categories. Generally, increasing 
downstream clast’s roundness can be observed alongside 
their decreasing angularity. Moreover, there are two small 
histograms in this graph that describe two important  
sediment sources: moraine and fluvial-flow fan. The effects 
of these tributaries are clearly visible in the graph, especial-
ly the increased amount of angular material derived from 
moraine sediment sources. A significant portion of angular 
clasts (VA+A, 22%) and sub-angular clasts (SA, 65%) can 
be observed.

Fig. 4 - Map of the sediment sampling localities within the braidplain of the Keller River (on the left side); the sediment sources within the Keller 
Catchment with the slope characteristics (on the right side).
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Fig. 5 - Downstream change of channel width (a - above) and braiding index (b - below) in the Keller River.
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Fig. 6 - Downstream change of the main petrological types of sediments in the Keller River braidplain.

Fig. 7 - Downstream change of sediment roundness in the Keller River braidplain.
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Sediment sources and connectivity

To explain the effects of sediment source subcatch-
ments (fig. 4), it is necessary to know the type, position 
and activity of each source.. Source 1 is at the upper part 
of the Keller River and is a debris-flow-dominated fan 
with an area of 1.9 km2 and a highest slope greater than 
87%. The moraine sediment source (Source 2) is right-
side with a highest slope greater than 88% and an area of 
1.2 km2. Other left-side debris-flow-dominated fans are 
sources 3, 4 and 5, which are similar in area and activity. 
Sediment source 6 encompasses the Monolith fluvial-flow 
sediment source, which flows from the Monolith Lake 
and is a flat area with braided morphology. With an area 
of 8.5 km2, debris-flow-dominated fan source 7 is the 
largest, which can be owed to the Davies Dome Glacier 
in the upper parts of this tributary. The eighth and last 

sediment source is fluvial-flow-dominated and close to the 
Brandy Bay with an area of 2.4 km2. Clast analysis and 
geomorphological mapping was carried out at each sed-
iment source.

For a better understanding of how such sediment 
sources affect channel morphology and processes and 
bed material characteristics, the index of connectivity 
was determined for the whole Keller Catchment (fig. 8). 
Using Cavalli & alii’s (2013) index, this analysis is ac-
companied by some documentary photographs. Blue ar-
eas indicate places with a low index of connectivity (e.g., 
areas around the Monolith Lake and in the middle part 
of the active zone), while red colour highlights the areas 
with a high index of connectivity (e.g., first sedimenta-
ry source, moraine of the Whisky Glacier, upper parts of 
the tributaries and the left-side slope of the last tributary). 

Fig. 8 - The sediment connectivity map; the photographs (A to D) show areas with different degree of connectivity.
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This analysis allowed for the identification of different 
degrees of connectivity – that is, sources that are more 
connected (Source 1) and those that are almost discon-
nected (Source 6). The studied catchment area, which is 
devoid of human activity, is a good reference for fluvial 
systems characterised by high sediment connectivity and 
high sediment supply.

DISCUSSION

Downstream changes in the sediment characteristics

Small petrological differences were observed in sedi-
ments, but it is unclear if these were influenced by tribu-
taries. Notwithstanding this, the catchment was influenced 
by glacier retreat, which reworked sediments and caused 
sandstone to be the dominant type, whereas basalt was 
decreased and palagonite was increased along the river 
from the spring to the mouth. The only notable change in 
sediment characteristic trend was observed in reach 5 at 
locality 10, where the confluence with left-side tributary 
from Monolith Lake is located. The Monolith Lake area 
is known for the presence of large hyaloclastite breccia 
boulders (Kňažková & alii, 2020), from which palagonites 
originated due to weathering.

Factors controlling downstream changes in channel  
morphology and clast roundness

From a channel morphology point of view, tributaries 
(sediment sources) impact the widening of channels, in 
contrast with the findings of Ondráčková & alii (2020). 
Significant disruptions can be explained by natural factors, 
such as sediment input into the main channel and changes 
in valley morphology (e.g., confinement, confluences and 
flat areas). Braiding indices are closely linked with chan-
nel width, and unconfined conditions make more space 
for braiding to develop. It is worth noting that under the 
conditions in this region (no vegetation cover and high 
sediment supply), braiding intensity increases remarkably, 
especially in the last reach after significant confluence with 
other important tributary sources 5, 6 and 7.

The association between discontinuities in roundness 
and tributaries has shown that some tributaries disrupt 
downstream roundness processes. The moraine sediment 
source (2) adds a significant portion of very angular, angu-
lar and sub-angular clasts into the main Keller River. It is 
a frontal to lateral moraine with traces of push processes. 
There is a 25% decrease in sub-rounded clasts, which is 
the most significant longitudinal trend change along the 
river. Afterward, the number of angular clasts transported 
by the stream decreases and is accompanied by a signifi-
cant increase in clast roundness. This trend is amplified 
in the last two reaches (R6 and R7). The effects of axial 
river transport on clast roundness also increases in these 
two areas; this type of trend has been expressed in several 
proglacial streams (Gustavson, 1974; Huddart, 1994; Ben-
nett & alii, 1997; Hambrey & Ehrmann, 2004; Hambrey 
& Glasser, 2012; Hanáček & alii, 2013). The dominance 

of axial transport is enabled by a stable channel belt. In 
a modern braided river, Gustavson (1974) described an 
increase in clast roundness in the downstream direction. 
Hambrey and Ehrmann (2004) and Hambrey and Glass-
er (2012) also noted the dominance of rounded grains in 
modern proglacial streams. In other words, the existing 
literature has noted that in general, transported material 
in mountainous proglacial braided rivers exhibit trends in 
gradual roundness increases or in dominance of rounded 
classes.

CONCLUSIONS

The results of this work enable a better understanding 
of channel morphology, bed sediment characteristics and 
factors controlling their variability along the Keller River 
on James Ross Island, Antarctic Peninsula. The focus shifts 
from the scale of the sediments transported in the Keller 
River to channel morphology, sediment sources and sedi-
ment connectivity.

The connectivity within the Keller Catchment plays 
a prevailing role in  sediment transport from slopes to 
channels. The upper parts of the catchment are high-
ly connected, and due to the instability of the material 
cover on the slopes, the debris-flow processes (or other 
gravitational processes) transport material into the chan-
nel. Fluvial-flow transport by tributaries was also found to 
be important in Keller Catchment. Both debris-flow pro-
cesses and fluvial-flow transport are supported by melting 
of snow, active layer and glaciers.

Overall, the Keller Catchment is characterised by 
high sediment connectivity and high sediment supply, 
which clearly affect channel morphology and bed material 
characteristics. As for channel morphology, both channel 
width and braiding intensity show an increasing down-
stream trend, although its channel width is quite irregular. 
As for bed material, sediment sources have notable control 
of clast roundness with little effects on petrological char-
acteristics.

This work presents the first fluvial geomorphological 
dataset from this region. The catchment area, which is 
devoid of human activity, is a good reference for studying 
braided river systems under natural conditions. Our study 
gives insights for understanding of channel morphology, 
bed material characteristics and factors controlling their 
variability at a local scale – or typical for proglacial rivers in 
polar regions. On the other hand, such insights about fluvi-
al processes coupled to sediment connectivity can be used 
in another catchments in different climatic conditions. 
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