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ABSTRACT: MaZza A., The kinematic wave theory: a priority of the Ita-
Tian Glaciology (De Marchi, 1895). (IT ISSN 0391-9838, 1997).

‘L'he Ttalian priority of the kinematic wave theory, developed by Luigi
De Marchi as early as 1895 and 1911, is duly recognized. The theory in-
terprets the relation existing between climatic factors and fluctuations of
glacier terminus. The theory had been developed disregarding the glacier
mechanics, which, at that time, was scarcerly understood.

After the developments of the theoretical glaciology, starting from
1948, carried out by English physicists and metallurgists, the kinematic wa-
ve theory has been rediscovered by English researchers and used to inve-
stigate the flood waves along rivers and the road traffic flow perturbations.

In an improved physical and technical frame, English and American
physicists exploited the new kinematic wave theory in glaciology and, sin-
ce then, the theory is considered fundamental in the physical and mate-
matical investigation of the glacier fluctuations, with special regard to the
evaluation of the response time of glaciers to climate oscillations. It is
exactly the evolution of glaciology that, leaving unaltered De Marchi’s
concepis, confirms the present validity of the kinematic wave theory.

KEY WORDS: Kinematic wave, Continuum mechanics, Materials scien-
ce, Plasticity, Surge, Computer simulation, Glaciology.

RIASSUNTO: Mazza A., La teoria delle onde cinematiche: una prioritd
della Glaciologia italiana (L. De Marchi, 1895). (IT ISSN 0391-9838, 1997).

Si pone in rilievo la priorita iraliana della teoria delle onde cinemati-
che formulata da Luigi De Marchi nel 1895 e nel 1911. La teoria interpre-
ta la relazione esistente tra fatrori climatici ed oscillazioni della fronte dei
ghiacciai, Fssa fu formulata astraendo dalle modalita del moto del ghiac-
ciaio, allora scarsamente note.

Dopo gli sviluppi della glaciologia teorica, a partire dal 1948, ad ope-
ra di fisici inglesi, la teoria delle onde cinematiche fu riproposta nel 1955
da ricercatori inglesi ed applicata allo studio delle perturbazioni delle cor-
renti lungo i fiumi ed ai problemi della circolazione stradale.

In un quadro fisico e tecnico pilt maturo, fisici inglesi e statunitensi
riproposero la teoria delle onde cinematiche in campo glaciologico e da
allora essa & considerata fondamentale nello studio fisico-matematico del-
I’evoluzione dei ghiacciai, con particolare riguardo al calcolo del tempo di
risposta dei ghiacciai a perturbazioni del clima. E proprio alla luce dell’e-
voluzione della glaciologia che risaltano le concezioni del De Marchi, so-
stanzialmente ancora oggi inalterate.
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dei materiali, Plasticita, Simulazioni al computer, Surge, Glaciologia.
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THE KINEMATIC WAVE THEORY:
GENERALITY

Aim of this paper is to underline the Italian priority
of the theory of «kinematic waves» travelling down the
glaciers, established by Luigi De Marchi, and also to
enhance its present validity, even after a century from the
date of its birth. The theory was developed independently
of the glacier flow mechanics and it holds its validity,
even after the introduction of material science, plastic
deformation theory and continuum mechanics in glacio-
logy, and, since 1958, it is used to explain the glacier
dynamics.

Under «kinematic wave, being triggered by an increa-
se of mass in the upper reach of a glacier, it is understood a
bulge on the glacier surface which travels along the glacier
at a velocity about 4-5 times higher than its average value.
The name «kinematic wave» is due to the fact that no dy-
namical equations are involved in the derivation of its
mathematics. The theory applies only to «unidirectional»
glaciers (Hutter, 1983).

The physical reality of this event has been proved
towards the end of the last century at the «Mer de Glace»
(M. Blanc range; Vallot, 1891-1896 in Lliboutry, 1965: p.
629), and, at the beginning of this century, at the Hinte-
reisferner (Austrian Alps; in Lliboutry, 1965: p. 623); mo-
re recently a kinematic wave has photographically sur-
veyed at the Nisqually Glacier, Mount Rainer, WA, USA
(Veatch, 1969). It is however to be stressed that this event
is quite rare in spectacular form [strong increase in velo-
city in the glacier section interested by the bulge (thick-
ness increase)].

The propagation of a kinematic wave can cause the gla-
cier terminus to advance, if the Summer thermal regimen is
close to a steady state. However, in a recent paper on the
secular glacier changes in Northern Sweden (Raper & a7,
1996), it is stated that in glacier evolution the accumula-
tion factor is more effective than the temperature-one.
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THE FIRST DE MARCHI'S PAPER (1895):
«LE VARIAZIONI PERIODICHE DEI GHIACCIAI»
(THE PERIODIC GLACIER FLUCTUATIONS)

Luigi De Marchi introduces his theory confuting the
previous opinions on the causes and features of the perio-
dic glacier fluctuations, proposed by some known glaciolo-
gists of his time (Forel, Richter, and Hess). He states that
«each continuous matter flux must obey to the general low
of continuity», described by a continuity equation:

—+—+x=0 (1)

where:

A = area of the glacier section at the point x, as calculated
from the point x = 0, along the longitudinal glacier axis;

Q = ice volume; and

a = ablation (melting).

The application of the continuity laws in glaciology,
still basic after a century, is the first witness of the correct
base of the theory. Hutter (1983: p. 3) writes: «Basic to ice
mechanics - be it the theory of glacier flow, the response of
floating ice plates to external loading, and the ice drifting,
or the very practical question of ice forces on structures -
are the fundamental laws of continuum physics».

Starting to outline his theory, the Author makes the
assumption that there is a periodic variation of climate,
which causes a corresponding periodic variation of Q (ice
mass) and o (ice loss, melting); further, in the assumption
that such variations may be expressed by a simple harmo-
nic function, he derives the following equations:
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where:

€ = phase of q,

g, = phase of Q; and

7 = g, - € is the phase shift between Q (ice volume) and a
(ice melting).

Considering the only fundamental term of the trigono-
metric series expansion, the foregoing equations show, ac-
cording to De Marchi, some basic laws which govern the
flux wave propagation and the related bulge thickness.

Equation (2) says that «in a steady-state glacier the flux
diminishes along the glacier for the ice quantity subtracted
by melting».

Equation (3) shows that «the amplitude of the ice wave
varies together with the descent of the same ice wave, in-
creasing if cos(g, - €) is negative, and decreasing, if it is po-
sitive. This variation depends, necessarily, on the existance
of a period not only in snow accumulation but also in ice
ablation».
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As seen above, putting €, - € = T (phase shift between
Q and o), De Marchi states: «When the ice wave travels
down, €, increases, as it can be derived from eq. (4), whe-
reas € may be considered constant, as the thermal period
takes place about simultaneously along the whole glacier
length».

Going on in its reasoning, De Marchi writes: «If in a
steady-state water current, we pour a given water quantity,
this produces a wave travelling along the current; it will
reach the end of the current conserving its initial mass, in-
dependently of the velocity, even if, at a given point of the
current, there is a suction pump which subtracts a constant
water vein. [t (the mass) can increase only if, at the instant
at which the wave flows at a given point, the suction
pump, reducing its capacity, will suck a smaller water
quantity; or the mass can decrease if the pump, increasing
its suction capacity, will suck more waters.

The above considerations are the first section of De
Marchi’s reasoning, «as the melting operates in each point
of a glacier as the above pump, and only a reduction or in-
crease of its capacity during the travel of the kineamtic wa-
ve, will cause its amplitude to vary». This reasoning de-
pends on the theory of Bruckner’s climate periods, which,
at that time, were considered as physically existing but to-
day we know they are not, as the data collected later con-
firm that the fluctuations of climate do not take place at
fixed intervals and constant amplitudes.

In De Marchi’s paper some new ideas are introduced,
namely the «fluidity» of ice (depending on the seasonal
temperature): this shows that De Marchi could understand
what would be later demonstrated by mechanical testing
(compression, bending, impact strength) of ice: keeping
constant all other parameters (grain size, kind of stress,
stress gradient, strain rate, etc.) involved, the response of
ice to a stress depends on temperature.

De Marchi defines the velocity of the wave and its
propagation depending on the phase shift between the
climatic oscillation and the glacier response. Even if a «gla-
cier mechanics» was missing, he gets to the conclusion,
still valid, that the velocity of the kinematic wave is higher
than the velocity of the glacier; for the first, he gives the
following relation:

u=o 22 (5)

where

u = velocity of the kinematic wave;

n = phase shift (¢, - €) between Q (ice volume) and
(ice melting);

= increase in precipitation;

thickness increase of the glacier;

= accumulation area;

= glacier cross section at the outlet from the accu-
mulation area.

ot W»n oo

De Marchi gives the time 7 which the kinematic
wave would take to travel along the whole glacier of



length 1, if its velocity would remain constant at its
starting value:

by

° ©
pr S
(with the symbols already specified); the relation «can be
read - writes De Marchi - saying that the wave travel time
needed is proportional to the period time and to the length
and sensitivity of the glacier, and inversely proportional to
its prompinesss.

Under sensitivity the A. means the ratio between hl,
i.e. the height of the kinematic wave (bulge on the glacier
surface), and pl, the increase in precipitation; under
prompiness, De Marchi means the ratio between S, area of
the accumulation reach, and b, cross-section at the exhit
from the accumulation reach.

Today the response time quoted by De Marchi is consi-
dered too short and the idea of periodical climate fluctua-
tions is no longer valid; but this does not impair the three
following fundamental derivations of the first theory of ki-
nematic waves:

1) the glacier must be treated as a continuum and, hen-
ce, its evolution must be seen in the frame of the theory
which, many decades later, would be called «glacier me-
chanicas», which is but an extension of the «continuum
mechanics»;

2) the kinematic wave travels at a velocity higher than
the average value of the glacier;

3) there is a phase shift between the excess in feed
(snow fall) and the terminus expansion; today, this is called
«response time of a glaciers.

DE MARCHT'S SECOND PAPER:

«LA PROPAGATION DES ONDES DANS LES
GLACIERS» (THE KINEMATICvWAVES
TRAVELLING ALONG THE GLACIERS; 1911)

With reference to a paper of Tarr (in De Marchi,
1911), which describes the sudden advance of an Alaskan
glacier in the Yakutat Bay, attributed to an earthquake, De
Marchi revisites his theory of 1895, giving an up to date
version of it which, probably but not expressely, takes into
consideration the paper of Finsterwalder (1907), which al-
so concerns the same problem of the kinematic waves, on
the base of measurements carried out on the Hintereisfer-
ner (Austrian Alps). The theory is of course still based on a
continuity equation (say conservation of mass, see eq. 1)
and disregards as the former one, the glaciers mechanics
«... indépendamment de toute théorie sur la nature et la
cause du mouvement du glacier ...» (non depending on
any theory on nature and cause of the glacier motion). De
Marchi (and S. Finsterwalder too) is conscious that, at his
time, the mechanics of mass transfer from the accumula-
tion reach to the ablation-one, was poorly understood.

The three quantities already mentioned, are considered
periodic and, hence, expandable in a Fourier series; in this
way De Marchi assumes that dQ/dx and a (flux and abla-

tion) correspond to the sum of single waves, each repre-
senting a climatic period which is supposed by the A. ha-
ving the same time span, and such that, at each oscillation
of Q corresponds an oscillation of A having the same pe-
riod. Ay, Qp and @ are the regular values; A,, Q, and «,
are the n* wave amplitudes, and €, €', and &”,, are the cor-
responding phases; all these quantities are function of x
(longitudinal axis of the glacier).

De Marchi explains the conditions which satisfy the
equation (5) in which the series expansions are introduced.
The flux variations of Q, says De Marchi, cannot be sepa-
rated from the variations of A; nevertheless they may be
considered sinchronous, as first approximation. De Mar-
chi’s equations are the following:
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Equation (7) shows the evidence that, for a glacier in
regular regimen, the flux decreases along the same glacier,
due to ice melting.

Equation (8) expresses the law of the wave amplitude
variation: the amplitude decreses if the melting period is
phase-delayed or anticipated, with reference to the flux pe-
riod for a quantity less than

T/4, ie. (', ¢, < 90°) (10)
and increases in the opposite case; and it remains un-
changed if the phase shift if 90° or if melting is constant
(09 =0).

Eventually from equation (9) De Marchi derives the ve-
locity of the wave propagation.

This simplification is considered valid by the A. either
in case in which the climatic period is very short and the
ice melting is constant; or in case in which the melting wa-
ve is in phase with that of the flux (€”, = €,) as it happens
in seasonal periods in which the velocity is higher (Sum-
mer) and lower (Winter; we know today that the ice me-
chanical strength, and, hence, its deformability and, even-
tually, the glacier velocity, depend on temperature). If we
choose the origin of x in way such as, for t = 0, € = 0, we
obtain C = 0, then, &, (perturbed phase of the flux) is

given by:
o - 2n [An]
SR oN i

[A,/Q,] being an average value of the ratio area/flux in the
interval x. The n® term of the Q expansion will be given by:

anosz,—g-[t—[g—:]x}

(11)

(12)
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which represents a wave travelling along the x axis at a ve-
locity (Q./A,). This velocity has a meaning and a value
completely different from the average value Qy/A, of the
flux. To give an approximate value of the wave propaga-
tion velocity, De Marchi assumes that the positive half-wa-
ve at the origin of motion (t = 0), on a long-section of the
glacier L/2 (L. = wave length), with x = 0 as average axis,
includes the volume q of snow accumulated in amount ex-
ceeding the regular value during the half-period T/2.

If b is the glacier width and h, is the original height of
the wave (bulge), we will have:

A,=b.h, (13)

The starting velocity of the wave propagation will be:

94

bh, (14)

H| =

Be | the length of a glacier from the origin of the wave;
let assume that the propagation velocity is uniform; the d-
me T needed by the wave bulge to reach the glacier termi-
nus will result:

(15)

From eq. (15) De Marchi derives that the time needed
by the wave to get to the glacier terminus, causing the in-
crease in thickness and the terminus expansion, is so much
shorter when:

1) the shorter is the period T;

2) the bigger is the snow volume accumulated at the
origin of the kinematic wave;

3) the smaller is the glacier size; and

4) the «fluider» (today we would say «more ductile») is
the glacier ice.

The height h, of the wave bulge depend, in fact, on is
«fluidity» (this is the word used by De Marchi; later on,
one would speak about the ice viscosity depending on tem-
perature, grain size and stress conditions, as already men-
tioned), as a given ice volume q should transform in a wave
(bulge) which is so much flatter on the glacier surface, the
«fluider» (= less viscous) is its ice.

MATERIALS SCIENCE, CONTINUUM MECHANICS,
AND GLACIOLOGY

It has been already stressed that the above De Marchi’s
theory is still valid, even if established when the present
knowledge concerning the properties of ice as material, as
well as a «glacier mechanics» were missing. The science of
materials, and specially the investigation on elasticity and
plasticity, was started in the half of the past century mainly
by Tresca (1864; in Lliboutry, 1964), Barré de St.-Vénant
(in Lliboutry, 1964), and, at the beginning of this century,
mainly by Von Mises (1913; in Lliboutry, 1963), but, as al-
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ready said, the knowledge gained had not yet been exten-
ded to glaciology, which had been mainly developed by
Naturalists than by Physicists, except some exceptions
(e.g. Tyndall, 1860).

We are to wait until the historical meeting organized
by Seligman on April 29, 1948 with the participation of
the British (later International) Glaciological Society, the
British Rheologists Club and the Institute of Metals, du-
ring which Orowan (1949), a metallurgist, outlined the
mathematical theory of a perfectly plastic body (Lliboutry,
1964).

The application of the material science to glaciology,
proposed by Orowan (1949) and later by British physicists,
mainly Nye (1951) and Glen (1955), marked the start of
the modern theoretical glaciology, within which a new
theory of kinematic waves travelling along the glaciers has
been developed. Tn 1953 the theory of dislocations, lattice
defects to which the deformation of policrystalline mate-
rials, such as merals and ice too, is due, has been develo-
ped mainly by Cottrell (Lliboutry, 1964). The invention of
the electronic microscope confirmed the physical existence
of the lattice defects, mainly the dislocations. The appli-
cation in the field of structural glaciology followed in
short time.,

Now the theoretical frame for the physical and mathe-
matical outline of the conditions in which the creep (very
slow deformation under constant load) of ice takes place,
was ready and enabled some researchers to review the ki-
nematic wave theory, in the light of the contributions co-
ming to the glaciology from the development of continuum
mechanics, numerical analysis and tensor calculus (Synge

& Schild, 1949; Nye, 1959).

THE NEW THEORY OF KINEMATIC WAVES
TRAVELLING ALONG GENERICvCURRENTS

In 1955 two British researchers, Lighthill and Whitham,
(Hutter, 1983; Paterson, 1994) published their investiga-
tions on the kinematic waves to study the flood waves on
rivers and the traffic flow peraturbations. The «news»
theory of the kinematic waves was later extended to glacio-
logy by Nye and Weertman; it is clearly outlined in the gla-
ciological treatises by Lliboutry (1965), Hutter (1983) and
Paterson (1994), to which anyone interested in this subject
can easily apply; we give up to outline it, considering that
this paper is mainly devoted to enlighten the glaciological
component of the wide activity of De Marchi (Castiglioni,
1937).

We only recall a new, important feature of the revisi-
ted kinematic wave theory: the introduction of a quantity
called «diffusion»; this, depending on the geomertrical fea-
tures of a glacier, exerts its effect reducing the height of
the wave bulge and increasing the response time of the
glacier to the climate fluctuations (Nye, 1965). The mathe-
matics of the new theory is however quite different (Hut-
ter, 1983; Paterson, 1994), as it is based on the mass ba-
lance of glaciers. In a newer paper (Van De Wal & Oerle-
mans, 1995) the problem of propagation of the kinematic



waves in glaciers is critically reviewed: according to the
Authors, the wave velocity could be 5 - 8 times the avera-
ge glacier velocity.

THE GLACIER SURGE AS ASYMPTOTIC LIMIT
OF THE KINEMATIC WAVE PROPAGATION

De Marchi’s idea (De Marchi, 1895 and 1911) has
brought a plenty of results; in our opinion, the concept of
kinemaric wave is applicable, as limit, to the «surge» of
glaciers; in fact some glaciers remain quiescent for long ti-
me (it does not seem that they surge at fixed intervals) du-
ring which there is a regular accumulation: the main fac-
tors triggering the «ice flood» are likely to be a strong in-
crease of thickness, with consequent or accompanying in-
crease in temperature at the glacier bed, where the ice rea-
ches the melting point [the dependance of the ice melting
point from the load (pressure) has been already outlined
by Tyndall (1860) and quantified by Fermi (1937)].

The increased water bulk, sometimes at high pressure,
reduces the ice/bedrock friction, and, hence, the shear
strength at the glacier bottom, and eventually the reaction
to the glacier motion, with consequent increase in glacier
sliding velocity. (According to Van De Ween & Oerlemans
(1995) an increased surface velocity, due to increase sliding
velocity, could be misinterpreted as a kinematic vawe.)

The result is the transition from the creep (flow of ice
under constant stress) to a chaotic flow (as the ultimate
tensile strength of ice has been overcome; Molnia, 1995);
the final result is an increase in glacier velocity by 10 - 20 ti-
me the typical average velocities of glaciers, and even more.

An exemplary limit-case, which supports the above sta-
tement of a kinematic wave in transition towards surging
conditions, took place at the Tapridge Glacier, Yukon
Territory, Canada (Clarke & Blake, 1991); this surge-type
glacier on June 24, 1980 showed a dramatic front of kine-
matic wave close to its terminus, which can be understood
as a transition condition from the arrival of the kinematic
wave to the terminus to the actual surge; temperature mea-
surements showed that the kinematic wave front marked
the limit of transition from the cold ice (about -2 °C) to
the temperate ice (close to 0 °C, or, better, 273.15 K), hen-
ce with an increase of 2 °C of the surface layer (thickness
15 m) of the glacier. Later the event disappeared, without
triggering an actual surge.

METHODS APPLICABLE TO THE COMPUTER
SIMULATION OF THE KINEMATIC WAVE THEORY

Within the frame of the theory outlined, it is assumed
to be of interest to mention some methods of computer si-
mulation, suitable to investigate and check the theory of
the kinematic waves.

We just mention the Finite Element Method (Fem)
(Brauer, 1992) and the more recent «Lattice Boltzmann
Method» (Bahr & Rundle, 1995); both, based on informa-

tic support, represent interesting investigation possibilities

to study deformation and thermal conditions of glaciers.
Assuming that the Fem is quite popular, we only give some
information on the Lattice Boltzmann Method, an outline
of which has been recently published (Bahr & Rundle,
1995); this is likely the most interesting software way to si-
mulate the travel of a kinematic wave along a glacier.

In the study of fluid currents as continua of the macro-
scopic physics, the well-known Nivier-Stokes equations are
currently used; they are partial differential equations (IMo-
setti, 1979) the solution of which, once very difficult or
quite impossible by analytical means, can today be tried by
the approximate methods of the numerical analysis (e.g. by
the finite difference method). It is well known that the ice
may be considered, under some respects, as a non-Newto-
nian highly viscous fluid, that is a fluid in which, at a linear
increase of its velocity, only a logarithmic increase in shear
strength takes place; to describe the flow of a glacier, the
above-nemtioned Navier-Stokes equations can be used.
The finite difference and finite element methods, which
take profit from new software of automatic generation of
grids suitable to simulate specific problems, treat a fluid as
a macroscopic continuum. Recent progress in statistical
mechanics has opened new possibilities of creating flow
models of low-viscosity fluids around complex geometrical
shapes.

The method called «Lattice Gas Automaton» (Lga;
Bahr & Rundle, 1995) represents a simulation way of the
flow conditions at microscopic scale; it has given excellent
results in treating very complicated boundary conditions
according to simple rules of particle collision, which re-
produce in any point the velocities of the fluid current
one needs to investigate. The computer coding is less
complicated than that needed for the finite difference
equations.

Under «automaton» the AA. mean a computational
machine (computer) with a definite set of inputs and out-
puts; it corresponds to the original concept of von Neu-
mann’s computer; at each step of the development of the
Lga model, a lattice cell is shifted in the direction of the
particle velocity; after the collision has taken place, another
cell is processed, and so on. The microscopic model was
created for mass, momentum and energy conservation.
The Lga models simulate a fluid as sets of gaseous particles
in collision, which, statistically, lead to a model of fluid
flow of Nevier-Stokes type. The transition from the macro-
scopic to the microscopic size allows a strong progress in
modelling the glacier flow to be obtained.

An evolution of the Lga method has brought to the de-
velopment of the Lattice Boltzmann Method (Bahr &
Rundle, 1995); the method considers populations of parti-
cles rather the individual particles, as in Lga method. Prac-
tically it is as if someone operates simultaneously with a wi-
de set of Lga simulations, determining later the probability
that a cell has a given momentum, i.e., that it occupies a
particular position in the lattice. The Lattice Boltzmann
method is suitable to treat problems of isothermal steady-
state conditions or involving wvariation of velocity in gla-
ciers, maintaining unaltered their geometry. This technique
may be used to transform the surface distribution of gla-
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cler velocity, to obtain information of the conditions exi-
sting at the ice-bedrock interface.

The method looks like to be very promising for the si-
mulation of the kinematic wave travel along the glaciers:
the actual difficulty lies in surveying the events of kinema-
tic waves; method like the Dtm (Digital Terrain Model, re-
ferred to the topographic surface) or, better, the Dem
(Digital Elevation Model, taking into account the accidents
on the topographic surface) could be used to survey gla-
ciers, at a given time interval, which are subject to kinema-
tic waves,

CONCLUSIONS

The priority of the kinematic wave theory, due to an
Italian scientist, geophysicist, geographer and glaciologist
(Castiglioni, 1937), receives its confirmation, after more
that a centrury from its birth, from the investigation which
are steel carried out on it.

It seems significant to underline that the severe Hutter
(1983) in his treatise «Theoretical glaciology» takes in con-
sideration the contribution of only three Italian scientists
to the theoretical glaciology: de Marchi, the matematician
Volterra, to which the first mathematical formulation of a
viscoelastic body is due, as well as the idea, very advanced
for the time he published it (Volterra, 1912)", of heredity
of materials structures, rediscovered in the 70’s in metal-
lurgical field; and, eventually, Tricomi, another well-
known mathematician: hence, the theory of the kinematic
waves in glaciers is the only acknowledgement of K. Hut-
ter to the Italian theoretical glaciology!

' Volterra was a member of the Ttalian Glaciological Committee in 1914.
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