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Abstract: Evelpidou N., Kawasaki S., Karkani A., Saitis G., Spa-
da G. & Economou G., Evolution of relative sea level in Okinawa (Japan) 
during Holocene. (IT ISSN 0391-9838, 2019).

Sea level indicators, such as tidal notches and beachrocks, may pro-
vide valuable information for the relative sea level (RSL) changes of an 
area. The study area, Okinawa, belongs to the Ryukyu Islands, Japan 
(Pacific Ocean), forming the emerged part of an active island arc, where 
the Philippine Sea plate is subducting beneath the Asian continent. Evi-
dence of emergence has been noted by various studies. Beachrocks have 
also been studied, however, detailed examinations of their spatial extent 
and cement characteristics has not been accomplished. The purpose of 
this study is to discuss the RSL evolution in Okinawa through the re-eval-
uation of reported sea level indicators, with additional observations of 
beachrocks and notches and RSL predictions. Our findings suggest that 
the majority of Okinawa beachrocks have formed in the intertidal zone. 
Although the vertical uncertainty of the produced SLIPs is relatively 
large, there is a good agreement between the different types of sea level 
indicators. Comparisons with RSL predictions as well as the presence of 

uplifted notches further suggest that Okinawa island is generally charac-
terized by an uplift trend, which is larger in its southern part. 

Key words: Sea level indicators; beachrocks; notches; relative sea 
level changes; Japan.

INTRODUCTION

Sea level changes are driven by long- and short- term pro-
cesses. Eustatic sea level changes are owed to variations in 
the mass or volume of the oceans and have a global impact, 
while relative sea level (RSL) changes are related to changes 
of the land with respect to the sea surface (Rovere & alii, 
2016). In this framework, fossil palaeo-shorelines may be 
identified through various types of sea-level indicators, such 
as notches, beachrocks, benches, or archaeological remains, 
and they may provide evidence for RSL changes. Geomor-
phological investigations can be particularly useful in the 
identification of coastal subsidence/uplift (e.g. Stiros & alii, 
2000; Morhange & alii, 2006; Kelsey & alii, 2006; Benac & 
alii, 2008; Shimazaki & alii, 2011; Dura & alii, 2011, 2016).

Beachrocks have proven particularly useful in the ab-
sence of other sea level indicators or when coupled with 
other available sea level indicators (e.g. Erginal & alii, 2010; 
Vacchi & alii, 2012; Stattegger & alii, 2013; Karkani & alii, 
2017). Although they have received some debate regarding 
their formation zone and their accuracy as sea level indi-
cators (e.g. Kelletat, 2006), their cement mineralogy and 
morphology are indicative of the diagenetic environment 
(Gischler, 2007), and therefore examination of cement 
characteristics can allow determining the spatial relation-
ship between the past shoreline and beachrock formation 
zone (Mauz & alii, 2015). 

Marine notches are coastal undercuttings extending 
along marine cliffs. They owe their development to various 
chemical, physical, biological or mechanical processes. Ma-
rine notches are particularly well developed on limestone 
coasts and are widely used to reconstruct RSL changes and 
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vertical tectonic displacements (e.g. Pirazzoli, 1996; Moses, 
2013; Evelpidou & alii, 2012; 2014; 2017; Goodman-Tcher-
nov & Katz, 2016; Schneiderwind & alii, 2017; Faivre & 
Butorac, 2018). According to Trenhaile (2014), the height of 
marine notches, formed by tidal wetting and drying and salt 
weathering, depends on the tidal range while their inward 
depth is controlled by climate, wave exposure and the de-
velopment stage within the cycle of formation and collapse. 
Tidal notches, in particular, are known as precise sea level 
indicators, undercutting limestone cliffs in the mid-littoral 
zone (Pirazzoli, 1986), and constitute very important ero-
sional geomorphological sea-level indicators (Evelpidou & 
Pirazzoli, 2015). They develop due to the higher rates of 
bioerosion near the mean sea level, in relation to the upper 
and lower limits of the intertidal range. Their profile is an 
excellent sea level indicator, providing information on the 
duration of a sea level stillstand and on the mode of sea lev-
el change, i.e. gradual or rapid (e.g. Evelpidou & Pirazzoli, 
2014; Evelpidou & alii, 2016) 

In this context, our paper focuses on the beachrocks and 
notches of the coastal zone of Okinawa (Japan) in an attempt 
to evaluate the RSL changes of the area during the Holocene. 

STUDY AREA

Geological setting

Okinawa forms the largest island of the Ryukyu Islands 
group (fig. 1a, b). The Ryukyu Islands are separated from the 
continental shelf of East Asia (East China Sea shelf) by the 

Okinawa Trough, a deep and narrow submarine basin that 
extends to depths of more than 1000 m and runs along the 
northwestern side of the islands. The Okinawa Trough is an 
active back-arc rifting basin behind the Ryukyu arc, since at 
least the late Miocene (Gungor & alii, 2012; Park & alii, 1998), 
triggered by the northwest subduction of the Philippine Sea 
Plate. Its maximum water depth approaches 2300 m in the 
south and progressively decreases to 200 m in the north.

The southeastern side of the Ryukyu Islands is bound-
ed by the Ryukyu Trench, which extends to depths of more 
than 5000 m. Two deep straits through the Ryukyu Islands, 
the Tokara and Kerama Gaps, divide the Ryukyu Islands into 
three island groups, known as the Northern, Central, and 
Southern Ryukyus. Okinawa belongs to the Central Ryukyus. 

The surficial geology of the Ryukyu Islands is character-
ized by a wide distribution of the Pleistocene Ryukyu Group 
consisting mainly of reef-building limestone, generally re-
ferred to as the Ryukyu Limestone (Kawamura & alii, 2016). 
The Ryukyu Group overlies the Late Miocene to Early Pleis-
tocene Shimajiri Group, which consists mainly of marine 
mudstone and sandstone (in contrast to the limestone of the 
Ryukyu Group), and pre-Late Miocene basement rocks.

Okinawa Island is narrow and elongated in an NE-SW 
direction. In the northern and central parts of the island, 
mountainous topography formed by pre-Neogene sedi-
mentary rocks is dominant, while hills and terraces are 
sporadically distributed and restricted to the coastal areas 
(Kawamura & alii, 2016). The hills and terraces are formed 
by the Pleistocene Ryukyu Group, consisting of limestone, 
sand, and gravel. In contrast to the northern and central 
parts, the southern part consists mainly of hills, terraces, 

Fig. 1 - Geographic and tectonic setting of the study area. A) Okinawa island is highlighted in the yellow box, B) location of beachrock and notch 
sites studied in this work.
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and coastal plains. The hills and terraces are formed by the 
underlying Shimajiri Group consisting mainly of mudstone 
and sandstone, and by the overlying Ryukyu Group con-
sisting mainly of limestone (Kawamura & alii, 2016).

Beachrocks of Okinawa Island

Due to the need of thoroughly understanding the for-
mation process of beachrocks in Okinawa Island, a number 
of studies have taken place during the last years (e.g. Danjo 
& Kawasaki, 2012, 2013, 2014, 2016). Most of the beachrock 
outcrops in Okinawa Island were found to have formed due 
to the precipitation of High Magnesium Calcite HMC (Dan-
jo & Kawasaki, 2013). The biological processes from surface 
microorganisms (e.g. local bacteria) may highly contribute 
towards the precipitation of HMC. The precipitation of 
HMC is particularly favored by the bacteria that use ure-
olysis. By studying and analyzing the microorganisms who 
initiate the processes of beachrock formation, it is possible 
to understand the main regulatory factors of a study area. 

The bacteria that may be responsible for the cementa-
tion process may be found in the overlying sandy sediments 
of beachrocks. Concentrations of urea may be found in the 
sea water from biodegradation of dead fish, as well as urine 
from mammals, amphibians, and fish (Maita & alii, 1973). In 
Okinawa Island in particular, five colonies of bacteria were 
found exhibiting urease activity in the sand (Danjo & Ka-
wasaki, 2014). The bacteria stimulate the hydrolysis of urea, 
CO (NH2)2. For Okinawa’s beachrocks, the most ureolitic 
active bacteria is Pararhodobacter sp (Danjo & Kawasaki, 
2016). Pararhodobacter sp. are Gram-negative, rod-shaped, 
aerobic, chemoorganotrophic bacteria, which are moderate-
ly halophilic and the bacterium is approximately 1 μm in 
diameter and 3 μm in length (Foesel & alii, 2011).

Previous research on Okinawa sea level changes

A number of studies were carried out in the Ryukyu 
Islands for RSL changes (e.g. Delibrias & Pirazzoli, 1983; 
Kawana & Pirazzoli, 1984; 1985; Ota & alii, 1985; Omoto, 
2001; 2004). For Okinawa Island, in particular, Pirazzo-
li (1978) refers to evidence of emergence in the southern 
part, such as mushroom-rocks, raised notches, benches 
and reef flats, indicating several sea level stands. In the 
northernmost part of Okinawa, beachrocks and notches 
indicate that the uplift was generally less in comparison to 
the southern part (Pirazzoli, 1978). According to Pirazzo-
li (1978), during great earthquakes, relative movements of 
uplift, subsidence, tilting, or undulation occur in one or 
several blocks, depending on the position of the epicenters; 
however, subsidence, must often be simply of a temporary 
nature, because a long-term uplift trend seems to prevail in 
most regions, even if it occurs at different rates.

Pirazzoli & alii (1985) used barnacles in order to de-
duce the RSL changes in Ryukyu Islands and found that 
a sudden upheaval, up to more than 3 m in some places, 
occurred at about 2355 yrs BP in the southern part of Oki-
nawa Island. Furthermore, based on barnacle samples col-
lected between +1.0 ± 0.4 and +1.6 ± 0.3 m, Pirazzoli & alii, 
(1985) suggested that the relative MSL has been somewhat 

higher than at present in several Ryukyu Islands slightly 
before and until ~600 yrs BP.

According to Kawana & Pirazzoli (1985), a number of 
indicators (notches, coral reefs, beachrocks and barnacles) 
suggest an uplift reaching + 2.5 m in central and south 
Okinawa. Kawana & Pirazzoli (1985) attribute this uplift 
to differential block movements and suggest a magnitude 
of 7.4, based on the amount of vertical displacement and 
the size of the uplifted area. The same authors suggest that 
the notches in the south and central Okinawa developed 
during a period of sea level stability between about 6700 
and 2350 yrs BP. In a similar manner, on the west coast 
of central Okinawa Island, crustal movements had taken 
place slightly later, if not at the same time, than in the south 
coast (Kawana & Pirazzoli, 1983).

Beachrocks have also been studied in the Ryukyu Is-
lands (e.g. Omoto, 2001; 2004; Omoto & alii, 2003). Ac-
cording to Omoto (2004), beachrocks from Okinawa Is-
land began to form at ~6900 BP and the last formation 
was around 400 BP. The ages of beachrock formation 
differ in the surveyed islands, but beachrocks in Okina-
wa Island were formed continuously between 4800 BP 
and ~400 BP (Omoto, 2004). The 14C age of 6890 ± 90 
BP given to a calcarenite sample collected from Bise Point, 
west coast of Okinawa Island, was the oldest age among the 
294 beachrock samples collected from the Nansei Islands 
(Omoto & alii, 2003). 

MATERIALS AND METHODS

Detailed spatial mapping of beachrock slabs was per-
formed during autumn 2015 and 2016, in the coastal zone of 
Okinawa island (fig. 1b). At each site, we carried out one or 
more transects to: i) measure the width and elevation/depth 
of beachrock slabs (with respect to the biological mean 
sea-level) and, ii) sample the top beds of the front (seaward) 
and the end (landward) of each beachrock slab (Desruelles 
& alii, 2009; Vacchi & alii, 2012; Karkani & alii, 2017). No 
sample was obtained from Kijoga site, as the beachrock has 
been characterized as cultural heritage. In order to perform 
petrographic analysis, stained thin sections were studied us-
ing transmitted light microscope and under SEM.

For each site, the time and the GPS coordinates were col-
lected, with an average horizontal accuracy of ± 5 cm, and 
the observed features were photographed and measured in 
relation to sea level at the time of observation. Precise eleva-
tion / depth measurements were obtained using a 3 m metal 
bar with centimeter division and built-in spirit level with 
a precision of ± 0.2 m. Multiple measurements were per-
formed and the average is provided as the elevation/depth 
value. Beachrock width was measured using a measuring 
tape and all data were recorded using a PVC slate.

Furthermore, notches were also recorded and mapped. 
Former sea-level positions were deduced from emerged tid-
al notches. Notch geometries, namely the height, inward 
depth and vertex depth from sea level, were measured 
according to Pirazzoli (1986) and Evelpidou & alii (2014). 
Several measurements were performed at each location to 
improve their accuracy. 
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Depth / elevation measurements from both beachrocks 
and notches were subsequently corrected for tide and at-
mospheric pressure during the fieldwork period. Tidal 
data were obtained from Naha tidal station, in Okinawa 
and all reported values are corrected. It should be noted 
that no tidal data were available for two sites (Gushikawa, 
Myibaru) during the fieldwork period. The average spring 
tidal range varies from 1.3 to 1.9 m along the coasts of the 
island arc (Pirazzoli & alii, 1985). In Okinawa, the local 
mean tidal range is ~1.25 m while the average spring tidal 
range is about 1.7 m (Stiros & Pirazzoli, 2005). In addition, 
error estimations for depth / elevation measurements were 
applied by taking into consideration the wave conditions 
and the measuring method. The wave’s effect on vertical 
measurements during fieldwork ranged between 0.05 to 
0.2 m and the measuring method included an uncertainty 
of 0.2 m (square root of 0.052 to 0.22 + 0.22).

In total, 17 thin sections from beachrock samples of 
Okinawa Island were prepared to perform petrographic, 
microstratigraphic and geochemical analyses. The thin sec-
tions were analyzed for the determination of their miner-
alogical composition and microstratigraphy using a Leica 

DMLP (Leica Microsystems GmbH, Wetzlar, Germany) 
petrographic microscope, with a digital camera and the 
corresponding image treatment software. The chemical 
and mineralogical composition of the consolidated sedi-
ment as well as the cement, were examined with a JEOL 
JSM 5600 Scanning Electron Microscope (SEM) equipped 
with an Oxford Link Energy Dispersive Spectrometer 
(EDS) (Oxford Instruments). The chemical composition of 
the minerals was determined using natural minerals and 
synthetic oxide standards, and 20 kV accelerating voltage 
with 1.5 nA beam current. Microanalyses were performed 
on epoxy resin-impregnated polished and platinum coated 
thin sections. All the microscopy and SEM-EDS examina-
tions were conducted at the Institute of Geology and Min-
eral Exploration (IGME), Greece.

In order to evaluate the relative sea level changes in 
the study area, a database of relative sea level index points 
(SLIPs) in Okinawa was developed. Samples were assigned 
a particular indicative range depending on their type and 
characteristics (e.g. Vacchi & alii, 2016). The associated ver-
tical error for the produced SLIPs was obtained by adding 
in quadratic individual errors of the indicative range and the 

Fig. 2 - Beachrock sites in Okinawa, Japan: a) At Yomitan site, beachrocks have a width of 18.6 m reaching an elevation of + 1.18 m, b) At Sumuide 
quarrying signs are evident in the seaward part of the beachrocks, c) Kijoga site, where the beachrock has been characterized as cultural heritage, d) 
Ginoza site, characterized by a well-developed beachrock reaching 21 m width. 
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sampling error (ranging from 0.2 to 0.5 m). For the beachrock 
samples obtained during this study, the cement characteris-
tics were taken into account and only samples showing clear 
intertidal formation (Mauz & alii, 2015) were converted into 
SLIPs (cf. Shennan & alii, 2015). All radiocarbon ages were 
recalibrated by using Calib 7.10 (Stuiver & alii, 2019) with 
the Marine13 curve (Reimer & alii, 2013). The list of calibrat-
ed ages is available as supplementary material.

We further used biological sea level indicators, reported 
in literature for the study area. Barnacles, as biological indi-
cators, have been used in several studies to deduce relative 
sea level changes and co-seismic movements (e.g. Pirazzoli 
& alii, 1985; Morhange & alii, 2001; Jaramillo & alii, 2017). 
According to Laborel & Laborel-Deguen (1994, 1996) Ch-
thamalus barnacles live at the upper limit of the midlittoral 
erosion zone and are in general poor sea level indicators 
(Laborel & Laborel-Deguen, 1996); their vertical range is so 
irregular (from a few centimeters to several meters) and it 
is difficult to compare the upper limit of fossil Chthamalus 
to that of the corresponding living population, therefore no 
accuracy better than + 0.5 m or even + 1 m may be expected 
(Laborel & Laborel-Deguen, 1996). However, present day 
distributions of Chthamalus challengeri have been reported 
from the coast of Izu Peninsula (central Japan), indicating 
that this barnacle occurs between 0.2 m below MSL and 
0.1-0.2 m above MSL (Kitamura & alii, 2014). 

The vertical zonation of the barnacle, Octomeris sulcata, 
has been discussed by Pirazzoli & alii (1985). The authors 
have reported several variations in the vertical zonation of 
Octomeris sulcata ranging from the low to the high tidal range 
and, for this reason, we have adopted this indicative range. 

To interpret the observational RSL data, we considered 
predictions from two Glacial Isostatic Adjustment (GIA) 
models, which have been obtained using the open source 
program SELEN developed by Spada & Stocchi (2007). 
SELEN solves the Sea Level Equation (Farrell & Clark, 
1976) taking into account for deformational, gravitational 
and rotational effects on sea level. In the two GIA runs 
performed, we have implemented in SELEN the recent 
ICE-6G (VM5a) model by Peltier & alii (2015) and the one 
progressively developed by the Research School of Earth 
Sciences of the National Australian University (ANU) (see 
Lambeck & alii, 2003 and subsequent contributions).

RESULTS

Beachrock distribution

For the purposes of this study, seven beachrock sites 
were visited and measured (fig. 2; tab. 1). At Gima, locat-
ed in the western coast of Okinawa Island, a continuous 
beachrock slab was found with a width of 19.6 m (fig. 3). 
The beachrock was measured between + 0.37 m and a 
maximum elevation of + 0.99 m. In the northern part of 
the beach, quarrying marks on the beachrock slab are ex-
tensive. A few kilometers south of Gima, at Yomitan, a con-
tinuous beachrock was found reaching a maximum width 
of 18.6 m (fig. 3), extending between + 0.37 and + 1.18 m. 

In the northwestern part of Okinawa, a beachrock was 
mapped at Bise, with a width of 13.5 m, extending paral-
lel to the coast for ~320 m (fig. 3). The beachrock lies be-
tween sea level and + 0.68 m in relation to mean sea level. 
A few kilometers to the east, at Sumuide, Yagaji island, the 
beachrock extends parallel to the coast for approximately 
130 m, with a total width of 11.9 m (fig. 3). Quarrying signs 
are also evident in this site. The beachrock is not well-pre-
served and appears eroded, however elevation measure-
ments have shown it lies between + 0.95 m and + 0.74 m in 
relation to sea level. 

At Kijoga (NNW part of Okinawa), the beachrock has 
been characterized as cultural heritage and for this reason 
no samples were obtained. The beachrock, however, is very 
extensive in relation to other sites, parallel to the coast for 
more than 800 m. Two transects were accomplished (at 
low tide). The maximum width was measured in the sec-
ond transect reaching 30 m (fig. 4). Overall, the maximum 
depth measured reaches - 0.13 m while its maximum eleva-
tion was found at + 0.83 m.

A beachrock of limited extent and width, reaching 8.3 
m, was identified at Gushikami, in the southern part of 
Okinawa. The beachrock lies in the back of a limestone 
platform, between - 0.21 and - 0.39 m below mean sea level 
(fig. 4). At Ginoza (central-eastern coast of Okinawa), the 
beachrock extends parallel to the coast for about 270 m, 
however it appears rather eroded. At its best preserved 
part, it maintains a width of 21 m, extending between - 0.22 
m to + 0.63 m, although it locally reaches + 0.96 m (fig. 4).

Table 1 - Location and characteristics of the studied beachrocks in Okinawa Island. 

Location Latitude N Longitude N Width (m) Landward slab
Height in relation

to sea level (m)

Seaward slab
Height in relation

to sea level (m)

Landward slab
Height in relation

to sea level (m) 
corrected

Seaward slab 
Height in relation 

to sea level (m)  
corrected

Gima 26° 25′ 03.5′′ 127° 42′ 48.9′′ 19.6 + 0.62 ± 0 + 0.99 + 0.37

Yomitan 26° 23′ 51.5′′ 127° 43′ 09.7′′ 18.6 + 0.81 ± 0 + 1.18 + 0.37

Bise 26° 42′ 32.2′′ 127° 52′ 47.00′′ 13.5 + 0.61 - 0.12 + 0.68 - 0.05

Sumuide 
(Yagaji isl.)

26° 40′ 44.2′′ 128° 00′ 41.9′′ 11.9 + 0.39 + 0.6 + 0.74 + 0.95

Kijoga (a) 26° 42′ 26.4′′ 128° 08′ 26.6′′ 14.4 + 0.56 + 0.05 + 0.83 + 0.32

Kijoga (b) 26° 42′ 21.9′′ 128° 08′ 14.3′′ 30 + 0.1-0.2 - 0.35 + 0.37 - 0.13

Gushikami 26° 07′ 10.7′′ 127° 44′ 56.7′′ 8.3 + 0.5 + 0.32 - 0.21 - 0.39

Ginoza 26° 28′ 08.6′′ 127° 58′ 12.6′′ 21 + 0.5 - 0.35 + 0.63 - 0.22



8

Fig. 3 - Transects of the beachrock outcrops at Gima, Yomitan, Bise and Sumuide (Yagaji Island).

Fig. 4 - Transects of the beachrock outcrops at Kijoga, Gushikami and Ginoza.
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Cement observations

The examination of beachrock thin sections using both 
petrographic microscope and scanning electron micro-
scope showed a coherent pattern (fig. 5). The majority of 
samples (tab. 2 e.g.: G2, G3, GIN1, GIN2, GG1, GG2a,b, 
SU 2, SU3, Y3) consist of well-medium rounded and sorted 
lithoclasts and grains with a high percentage of bioclasts, 
> 50% (forams, gastropods and lithified algae parts) (tab. 2 
e.g.: B2, G1, G3, GIN1, GG1, GG2a,b, SU1, SU2, SU3, Y1, 
Y2, Y3). The combination of well-rounded and well-sorted 
sedimentary material and the high contribution of consol-
idated bioclasts indicate a coastal environment with sig-
nificant wave activity. Additionally, meniscus cement and 
pellets have been noted in many beachrocks (tab. 2 e.g.: B2, 
B3, G2, G3, GG1, GG2a,b, Y1, Y2, Y3). 

The observed beachrock cements are mainly composed 
of thick isopachous High Magnesium Calcite (HCM) crys-
tals in both micritic and sparitic forms, which indicate a 
low- middle intertidal environment. This type of cement 
is also observed as coating surrounding lithoclasts and 
bioclasts. However, well developed crystals of aragonite as 
main bounding material or as a prefilling have been ob-
served in the beachrock samples from Bise (B1, B2), Gima 
(G1), Ginoza (GIN1, GIN2) and Gushikami (GG1) (tab. 2). 
Crystals of aragonite indicate a low intertidal or even sub-
tidal zone cementation (e.g. Tucker and Wright, 1990). The 
beachrock samples of Bise (B1, B2) are worth a special 
mention, where thick aragonite layers as cement coexist 
with matrix material (Mg-Calcite, Anorthite, Mica, Mont-

morillonite), indicating a more terrestrial cementation en-
vironment. However, sample B3 is characterized by HMC 
with sparitic infilling cement, suggesting middle intertidal 
zone.

The micritic HMC can form meniscus cement and 
peloidal (or pellet) concentrations, indicating a marine va-
dose cementation with higher sea water contribution than 
meteoric water. No evidence of meteoric cement was ob-
served and the collected samples contain at least one of 
the calcareous constituents deposited within the intertidal 
zone.

Last but not least, microbial activity has been noted in 
all samples. The characteristic of microbial activity is the 
micritic envelopes covering sediment particles (e.g. Tucker 
and Wright, 1990). Microbial activity presence is the first 
phase occurring on the sediment particles that triggers the 
precipitation of calcite. 

Notches

Uplifted notches were identified in the coastal zone 
of Okinawa Island (fig. 1, 6). Tab. 3 indicates the studied 
sites and includes information regarding notch measure-
ments at each site. Furthermore, the table includes notch 
measurements from past researches in the study area. The 
elevation of notches measured in the study area ranged 
between + 61 cm and + 219 cm above mean sea level. In 
the southernmost part of Okinawa, at Gushikawa, a con-
tinuous uplifted notch at about + 240 cm was identified 
(uncorrected for tide). A few kilometers to the northeast, at 

Fig. 5 - Cement observations from Okinawa beachrocks (see tab. 2 for details). Qz stands for quartz, Cal is calcite, Arag is Aragonite, HCM is high 
magnesium calcite, mic is microcrystalline.
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Gushikami, a number of mushroom notches were found. 
The vertex elevation from sea level varied between + 204 
and + 219 cm. Repeated measurements of their height has 
shown an average value of 198 cm while their inward depth 
was measured between 100-110 cm. At Myibaru (southern 
Okinawa), a continuous notch was found with its vertex at 
+ 68 cm (uncorrected for tide), having a height of 58 cm 
and an inward depth of 30 cm. 

At the WSW coast of Okinawa, at Yomitan site, a con-
tinuous uplifted notch is located at an average elevation of 
212 cm (+ 205 to + 219 cm). Repeated measurements of its 
height suggest values between 122 and 170 cm, while its 
average inward depth is 98 cm. At Gima, just a few kilo-
meters to the north, a continuous notch was measured at 
about + 181 cm above mean sea level, with a height of 75 
cm and an inward depth 55 cm (fig. 6). A second notch was 
also identified with its vertex at + 61 cm, with a height of 
80 cm and an inward depth of 20 cm. 

In the northwest part of Okinawa, at Bise, a continuous 
notch was found at about + 81 cm above mean sea level. Its 
height varied between 80-90 cm while its inward depth was 
measured between 40 and 58 cm. 

DISCUSSION

The beachrocks in the coastal zone of Okinawa

In the northwestern part of Okinawa the oldest 
beachrock has been dated by Omoto & alii (2003). A 14C 
age of 6890 ± 90 BP given to a calcarenite sample collected 
from Bise Point, according to Omoto & alii (2003). Accord-
ing to our cement studies of Bise beachrocks, they have 
been formed in the upper intertidal zone. Furthermore, 
at Sumuide, Yagaji island, according to Omoto (2003), 
two beachrock generations exist; the older one was dated 
around 2000 yrs BP and quarried while the younger one 
around 1000 yrs BP. Based on our results the beachrocks at 
Sumuide have formed in the intertidal zone. 

Relative sea level changes 

A number of sea level studies have taken place in the 
wider study area. Koba & alii (1982) studied the RSL sea 
level changes in the Ryukyu Islands through the use of 
coral reefs and concluded that sea level between 1700-

Fig. 6 - Notch sites in Okinawa, Japan: a) Gima site, with beachrocks showing signs of quarrying, b) At Gushikawa site, the notches reach an eleva-
tion of + 240 cm (vertex depth from sea level), c) Uplifted notch at Myibaru site, d) at Gushikami, the most remarkable features are the mushroom 
notches, with a vertex between + 204 and + 219 cm. 
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3500 yr B.P. was stable and was the highest in the Ho-
locene, reaching less than 1.0 m above the present sea 
level. Ota (1987) summarized and reviewed the relative 
sea level curves for Japan by various authors and conclud-
ed that RSL rose very rapidly between ~15,000-6000 BP, 
correlated with the postglacial rise in sea level, called ‘Jo-
mon Transgression’ in Japan. He further deduced that all 
RSL curves show a slightly higher level than the present 
at about 6000 BP (culmination of the Jomon/postglacial 
transgression). The age and height of this culmination 
shows regional and local differences reflecting the differ-
ent tectonic history of each area and its age ranges from 
5000 to 7000 BP. Ota (1987) further noted at least two 
minor negative tendencies in sea level after the ‘culmi-
nation’: A RSL fall at ~4000-5000 BP in several locations 
and at ~2000-3000 BP. Nakada & alii (1991) also studied 
the Late Pleistocene-Holocene sea-level changes in Japan 
by comparing observational and modelling data. Yokoya-

ma & alii (2015) studied the RSL changes in the island of 
Iriomote (southern Okinawa trough) and concluded to a 
Holocene-high-stand of 2.7 m at ~3500 years ago, after 
which sea level gradually fell to present level. They have 
attributed 1 and 1.5 m above present day sea level to GIA 
for the last ca. 4000, and consider the residual as indica-
tive of the long-term lithospheric uplift rate of the island 
(Yokoyama & alii, 2015).

In an attempt to contribute to the study of RSL changes 
of the area, we performed a coupled analysis of beachrocks 
and biological sea level indicators in order to re-assess the 
RSL changes in Okinawa Island. 

In fig. 7a, we have plotted the RSL index points de-
duced from past sea level studies, with a particular focus on 
beachrocks. Approximately 71 14C datings of beachrocks 
from Okinawa Island have been reported by Omoto (2004, 
2005, 2007). Although no cement observations have been 
reported for the beachrock samples, we have taken into 

Table 3 - Significant size of notches in Okinawa Island. 

Site Vertex depth 
from MSL (cm)

Corrected vertex depth 
from MSL (cm)

Height (cm) Inward depth (cm) Reference

Gushikawa, Kyan cape + 240 This study

Myibaru + 68 58 30 This study

Gima

+ 180 / + 180 + 181 60 / 75 50 / 55 This study

+ 60 + 61 80 20 This study

+ 134 + 112 190 107 This study

+ 90 + 68 170 90 This study

Yomitan + 186 / + 200 + 205 / + 219 170 / 122 95 (104, 123) / 72 This study

Bise + 55 / + 54 + 81 90 / 80 58 / 40 This study

Gushikami + 260-270 / + 250 / ? + 219 / + 204 255 / 180 / 160 100-110 / 100 / 110 This study

Giza-banta (S Okinawa) + 350 / + 360 Kawana & Pirazzoli (1985)

Ōdo + 265 ± 15 Kawana & Pirazzoli (1985)

Miyagi Isl. + 75 Kawana & Pirazzoli (1985)

Fig. 7 - A) Plot of sea level data from Okinawa Island, B) comparison 
of RSL index points from Okinawa Island with sea level curves derived 
from the wider study area.
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account cement observations derived from this study and 
adopted an indicative range between mean high tide and 
mean low tide. The associated vertical error was obtained 
by adding in quadratic individual errors both the indicative 
range (1.25 m, Mean High Tide to Mean Low Tide) and the 
sampling error (0.5 m; e.g. Vacchi & alii, 2016). In addition, 
the beachrock samples obtained during this study have 
been correlated with the age results from Omoto (2004, 
2005, 2007), in order to produce SLIPs with cement infor-
mation.

Due to the mesotidal regime of the study area, the ver-
tical uncertainty of the SLIPs is relatively large. There is, 
however, a good agreement between SLIPs produced by 
the beachrocks and the biological sea level indicators. The 
oldest beachrocks samples suggest a RSL of about ~-1.4 ± 
0.8 m around ~7160 ± 90 BP. 

In order to obtain a clearer idea regarding the relative 
sea level changes in the study area, we have plotted the RSL 
index points with a number of sea level curves published 
for the wider study area (fig. 7b). All curves plotted in 
fig. 7b suggest a sea level high-stand between ~4000-6000 
years BP with a magnitude of ~1-3 m.

SLIPs were compared with two modelled curves (fig. 8), 
obtained using the open source program SELEN devel-
oped by Spada & Stocchi (2007), which solves the Sea Level 
Equation (Farrell & Clark, 1976) taking into account for 
deformational, gravitational and rotational effects on sea 
level. The two GIA computations show, for the site of Oki-
nawa, qualitatively similar results, with a slight high-stand 
of a few tens of centimetres occurring in the last ~6000 and 
in the last ~4000 years for ICE-6G (VM5a) and the ANU 
models, respectively (fig. 8). 

The oldest beachrock samples are in close agreement 
with the prediction by ICE-6G. However, the largest 
cluster of RSL data is between ~500-5500 BP. A compar-
ison with the predicted curves suggests that the area is 
generally characterized by an uplift trend; however, dif-
ferential movements may have also taken place, as a num-

ber of data lie below the curves (fig. 8). The distribution 
of RSL data suggests that the uplift is larger in the south-
ern part of Okinawa Island. This is further supported 
by the presence of notches found from the northwestern 
part to the south part of Okinawa. They have a higher 
elevation toward the south, between + 204 and 219 cm 
(sites Gushikawa, Gushikami see tab. 3), in relation to 
the north part, where they reach an elevation of + 81 cm 
(e.g. site Bise).

CONCLUSIONS

Our study has shown that the majority of beachrocks 
in Okinawa have formed in the intertidal zone. Based on 
a coupled analysis of beachrocks and biological indicators, 
from published data and our observations, we produced 
SLIPs, which were further compared with GIA predictions 
for Okinawa Island. GIA computations show qualitatively 
similar results, with a slight high-stand occurring in the 
last ~6000 and ~4000 years for ICE-6G (VM5a) and the 
ANU models, respectively. The oldest beachrocks samples 
suggest a RSL of about ~-1.4 ± 0.8 m around ~7160 ± 90 
BP, which is in close agreement with predictions. A com-
parison of the produced SLIPs with the predicted curves 
suggests that the area is generally characterized by an uplift 
trend. This is further supported by the presence of uplifted 
notches, which have a higher elevation toward the south of 
Okinawa Island. 
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